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Abstract

Offline, off-policy reinforcement learning is of
critical importance in use cases where online al-
gorithms might be unsafe, costly, or unethical. A
host of off-policy methods exist for the evalua-
tion problem, or estimating the value of a state
for a proposed “evaluation” policy πe, but with
data collected under a behavior policy πb. How-
ever, benchmarking the performance of these var-
ious OPE methods is an ongoing effort. This
paper will evaluate the evaluators: given data gen-
erated by a behavior policy in a set of environ-
ments, which method should we choose, and for
which environments? We test importance sam-
pling (IS), weighted (or normalized) importance
sampling (WIS), fitted Q-evaluation (FQE), and
doubly robust FQE methods on two carefully cho-
sen environments meant to expose the underlying
properties of each method and their respective
differences in performance.

1. Introduction
We first consider an analogy: if an example of reinforce-
ment learning is the vehicle control problem, then offline,
off-policy learning is like driving with one hand tied behind
your back. In this case, we have batches of data generated
by a behavior policy πb and a target or evaluation policy
πe that is not (or almost always not) equivalent to the data-
generating policy. The evaluation problem, most generally,
concerns the case where we wish to estimate the true value
of a state, V (s), under an given policy, which itself a distri-
bution.
Consider, however, that πe ̸= πb: this distributional shift is
the central off-policy evaluation problem. First, what hap-
pens if the behavior policy is far from optimal? In the offline
setting, we have no way to interact with the environment,
and thus a policy that never explores, or only exploits poor
states, or otherwise acts suboptimally, has already tied our
hand to the car seat. Perhaps we should procure some scis-
sors? Yet, herein lies the out-of-distribution problem: the
further we stray from the behavior policy, the more error we
accumulate and a faster rate (quadratically with horizon H)
even with optimal action labels (1). To analogize once more,

this time with a supervised learning problem, we would be
hard-pressed to use a neural network to identify cat breeds
if we only trained only on dog breeds.
A host of methods exist to overcome this challenge. How-
ever, standard benchmarking tasks to compare these OPE
methods in different contexts are an ongoing effort. Given
an environment and a known (not estimated) behavior policy,
which method should we choose for a given target policy?

1.1. Contributions

This paper builds upon the findings of the Caltech OPE
Benchmarking Suite (2). Much like (2), our ultimate goal is
to have a checklist or decision tree that, after enumerating
the fundamental, high-level properties of an environment,
we can choose the best method for that environment. We
show the proposed tree of (2) below in Figure 1. This pa-

Figure 1. This paper presents experiments that re-evaluate the hori-
zon and policy mismatch nodes, and we briefly present results that
further explore the stochasticity of the environment. More details
on stochasticity can be found in the appendix, but the focus is on
whether or not we should re-order horizon and policy mismatch in
this tree.

per will only consider the tabular setting, and we focus our
experiments on the first two branches under the “Properly
Specified” node: how do horizon and policy mismatch in-
form one another? The order of these nodes is of critical
importance. While errors accumulate quadratically in hori-
zon length, and thus may dominate all other decision factors,
we consider off-policy learning in its greater context. We
evaluate a policy, but then we typically wish to iterate on
this policy; that is, we have some control over the evalua-
tion policy and its subsequent updates, but not the horizon
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(or other properties of the data). If we can constrain πe to
a neighborhood of πb, perhaps this horizon scaling effect
is more nuanced. The experiments presented here show
exactly this: even over longer horizons, the more “under-
powered methods” (like IS or WIS) may be competitive
performers.

2. Related Work
This work explores four methods that can be categorized
into three buckets: inverse propensity scoring (IPS), direct
methods, and hybrid methods. Importance sampling and
weighted importance sampling (3) fall into the IPS bucket,
and far predate reinforcement learning applications. These
were originally used for Monte Carlo sampling methods,
being particularly useful for numerical integration methods.
Direct methods are a broad and diverse class, encompassing
regression-based techniques that model almost any relevant
aspect of the reinforcement learning problem, whether esti-
mating the transition dynamics or the reward/value function.
In this paper, we examine the fitted Q-evaluation algorithm
(10), which is a flexible, model-free (i.e. no transition dy-
namics considered) method that has gained much recent
traction in the RL community. Hybrid methods attempt
to combine the best of both direct and IPS methods, and
the doubly robust method (11) is a plug-and-play estimator
that can use any direct method estimator, guiding the value
estimates with the importance weights of IS.

2.1. Importance Sampling (IS)

Importance sampling is a remarkably simple and straightfor-
ward method for off-policy evaluation (3). We will show the
short derivation for any distributions p(x) and q(x), where
we have samples drawn from q (and hence an approximation
of its expectation) and want the expectation of the random
variable x ∈ Ω under p:

Ep[x] =

∫
x∈Ω

xp(x)dx

=

∫
Ω

xp(x)
q(x)

q(x)
dx

=

∫
Ω

xq(x)
p(x)

q(x)
dx

= Eq

[
x
p(x)

q(x)

]

Recall that a value function of state s is nothing more than
an expectation itself: namely, it is the state-action value at
s weighted by the probability of taking action a ∈ A at s.
Taking this intuition and simple derivation, we introduce the

importance sampling estimator over N trajectories:

V̂IS(s) =
1

N

N∑
i=1

(
τ∏

t=1

πe(at|st)
πb(at|st)

)
︸ ︷︷ ︸

wi

(
τ∑

t=1

γtrit

)
︸ ︷︷ ︸

discounted rewards

Several remarks are of note. First, in the event that πe = πb,
the importance weights cancel and we obtain our “dumb”
estimate of the value at a state, or just the average over all
discounted rewards obtained from that state across the tra-
jectories. The sample mean, of course, is a trivially unbiased
estimator. Second, there are longer proofs that start from
the full Bellman equation (or at least our estimate of it), but
the (estimated) transition probabilities cancel out regardless
of where we start. In this sense, importance sampling is
“model-free” in that only information used in the weights are
how the actions are selected (i.e. the policy), which moti-
vates its benefits as a computationally inexpensive, baseline
model. As such, this estimator retains two well-known prop-
erties: it unbiased, but high variance (3). The estimator is
not even defined at certain behavior policies: we must make
the coverage assumption where πe > 0 implies πb > 0. Let-
ting πb = ε > 0 for all a ∈ A and s ∈ S, a rather extreme
but informative example is fixing k ∈ [0, 1] on the same
state-action space for πe, and taking limε→0

k
ε . The vari-

ance of any one importance weight is hence unbounded, and
the multiplicative weighting of several importance weights
across horizon length τ can exacerbate the issue, even for
the non-limiting case. Thus, there are two ways that IS can
collapse, and collapse fast: ε and τ .

2.2. Weighted Importance Sampling (WIS)

Importance sampling presents several problems, but the
method is simple, both fast to implement and easy to under-
stand and troubleshoot. The variance, however, is often too
high to be useful in any practical setting, especially consid-
ering that we would appreciate some safety guarantees in
the mission-critical scenarios that often motivate off-policy
learning in the first place (this motivates the idea of the
high-confidence off-policy evaluation framework (4)).
A simple modification to lower the variance of the IS estima-
tor is to divide by the importance weights, thus normalizing
the estimator. While the variance is still unbounded in a
limiting sense (consider limε→0

∑
i ki

ε where kj = ε for all
but one i ̸= j, and we see the same problem even though
we have mostly patched the problem), in practice, this often
makes IS more usable. WIS attacks the variance problem
through the limiting ε problem, but we can also take the
approach through τ via a per-decision importance sampler
by considering only (FINISH...). This is not considered in
our experiments for the sake of clarity and focus, but does
motivate the idea that importance sampling can indeed be
extended and usable.
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The weight normalization induces bias into the originally-
unbiased IS estimator, but greatly reduces the variance and
is a strongly consistent estimator. The estimator is given by:

V̂WIS(s) =
1∑N

i=1 wi

N∑
i=1

wi

(
τ∑

t=1

γtRi
t

)

2.3. Fitted Q-Evaluation (FQE)

Fitted Q evaluation (10) is a popular, model-free direct
method (in the sense that it does not rely on estimates of
Markov transition matrices) that estimates a Q−function
from data given a class of function approximators F . The
typical program looks something like, for k iterations and
model parameters θ:

Q̂k = min
θ

1

N

N∑
i=1

τ∑
t=0

Q̂k−1︸ ︷︷ ︸
f

(sit, a
i
t; θ)− yit


2

where
yit = Ri

t + γEπe
Q̂k−1(s

i
t+1; θ)

Note that the Q−function estimate Q̂k−1 is often denoted
as f in the literature, and the arguments of the minima are
taken over f ∈ F instead of the actual parameters θ of f .
As such, this is a very general framework that can incorpo-
rate deep learning, tree-based, or simple linear regression
techniques. In this paper, we opt for the latter with |θ| = |S|.
With generality, of course, comes the potential for model
misspecification. While importance sampling estimates are
of high variance, they are also of low bias. Because we
make assumptions about the number of parameters or the
actual model class, the bias for direct methods is typically
much larger while the variance is much smaller.
The model tuning and practical considerations are thus more
complex for FQE or other direct methods than simple IPS
methods. On the number of k iterations, for example, we
are guaranteed to asymptotically converge as k → ∞, but
of course cannot run infinite iterations in practice. We found
in our preliminary experiments that the number of required
iterations to meet a small threshold can vary greatly with
the number of trajectories and horizon length. While this
is not a particular problem for smaller MDPs using simple
regression as in this paper, this could become more compu-
tationally expensive in real-world settings.

2.4. Doubly Robust FQE (DR FQE)

Like importance sampling estimators, doubly robust esti-
mation techniques (5) also predate the application to the
off-policy evaluation problem (11). This hybrid method
combines the low variance and (potentially) high bias of
regression-based techniques with the high variance and low

bias of importance sampling estimators. Doubly robust esti-
mators have been used, for example, in dynamic treatment
regimes (6) and the contextual bandit setting (7). We will
first present the estimator in this contextual bandit setting
since the recursive translation to the sequential setting is mo-
tivated in (11) by solving a bandit problem at each horizon
t ∈ [τ ]. This is given by:

VDR := V̂ (s) +
πe(a|s)
πb(a|s)︸ ︷︷ ︸

ρ

(
r − R̂(s, a)

)

where R̂(s, a) is estimated in some fashion (typically by
performing regression), and V̂ (s) is simply the expectation
of this reward estimate over the randomness of the policy.
This form requires several remarks. First, the specification
of R̂(s, a) is intentionally vague: the user can specify this
estimate in any desired way. Thus, while this paper explores
a doubly-robust version of FQE for the sequential setting,
we could have just as easily specified any other reward or
state-action value estimation method here as well. Second,
we can interpret this form as a sort of “gradient descent” on
the value function with learning rate ρ and “gradient” on
error

(
r − R̂(s, a)

)
. In this sense, the doubly robust esti-

mator is using the importance weights to guide the direction
of update, while anchoring on the actual value estimate we
obtain through whatever pre-specified method we choose. If
R̂ is well-specified, then the error term goes to zero, and if
the importance weight is close to 1 (i.e. little distributional
shift), then the only update is done on the error of the es-
timate of the reward function. We thus obtain “two shots
on goal,” where if either of ρ or the reward function class is
properly specified, the estimator is asymptotically unbiased.
In this paper, we assume that the importance weights are
given to us, and therefore this particular instance of DR-FQE
is guaranteed to be asymptotically unbiased. The question
then becomes at what rate we achieve this unbiasedness.
The translation to the sequential setting only requires apply-
ing the bandit doubly robust estimator for each t. This form
is given by:

V τ+1−t
DR := V̂ (st) + ρt

(
rt + γV τ−t

DR − Q̂(st, at)
)

Note that the estimation is now done on the Q−function,
which is where we simply plug in our FQE estimates from
the previous section.
While the specifics of the result are dependent on the un-
derlying Markov Decision Process, (11) also shows that
the doubly robust estimator achieves the Cramer-Rao lower
bound on the variance of an unbiased estimator; that is, of
all unbiased estimators, this is the absolute best that we can
achieve. We do note, however, that a biased estimator could
have a lower mean-squared error.
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2.5. Experiment Hypotheses and Intuition

The ordering by which the methods were presented was
intentional. From IS to DR-FQE, the methods become more
sophisticated and, theoretically, better performers. Start-
ing with importance sampling, we observed a method with
unbounded variance and no guarantees on the “best-case sce-
nario,” to a doubly robust method that achieves the Cramer-
Rao lower bound and combines the sophistication of direct
methods with the simplicity of inverse propensity scoring
methods. As such, we expect this ordering on average.
There is, of course, no free lunch. While we expect and
roughly validate the findings presented in Figure 1, we also
note that there are a host of intricacies presented by the
environment “knobs” that are not fully captured in previous
work. By knowing the importance weights, for example, the
quadratic horizon scaling may become less relevant for the
IPS methods, especially if the behavior policy is “good” in
the sense that it balances exploration and exploitation.

3. Environments
In this paper, we examine two environments for the bench-
marking task. Each were initially chosen to separate vari-
ous environment-specific aspects of the off-policy evalua-
tion task. However, as we explore in this section, some of
these initially-posited differences were less relevant than
others. We also add that the methodologies presented here
are model-free: while they may not necessarily transport
across environments smoothly, they do not explicitly rely on
a “good” model of the underlying environment dynamics.
Still, policy exploration and environment dimensionality are
highly relevant, environment-specific dependencies that can
shift the ordering of method performance.

3.1. The Chain Environment

The chain environment (9) encapsulates the policy explo-
ration problem. We receive some small reward by starting
(and remaining) in the first state, but there is a much larger
reward at the end of the chain in the final state. We receive
no rewards by traversing the middle states, and we ensure
that the discount factor γ is large enough that there is indeed
a difference between the first and last states.

Figure 2.
The action space A has two elements: left or right. At the
beginning and end of the chain, a left and right move, re-
spectively, translates to staying in that first or final state.

Thus, the optimal policy is quite simple and known by ex-
amination: we should always move right, but we have to
make this decision at least n times in a row to obtain the
large reward, so the behavior or collection policy must have
explored most of the state space. If we choose the wrong
action even once, we go back to the starting state. The re-
wards are deterministic, but there is potentially stochasticity
in the transition dynamics. With probability ε, we “slip” to
the opposite action chosen.

3.2. The Mixing Environment

The mixing environment, in the form presented here, more
explicitly accounts for the dimensionality problem. Like
the chain environment, the action space here also has two
elements: “stay” or “leave,” where leaving places us at state
si+1 from state si. However, there are now far more states
and edges to learn than in the chain environment, and they
interact in a less straightforward way. The stochasticity
in this environment can also be quantified by a slippage
factor ε, but we now slip to any other possible state with
probability ε

n−1 . There is a deterministic reward hidden at
one state si, and all other states give no reward, always.

Figure 3. The mixing environment slowly becomes a fully con-
nected graph as the slippage factor increases.

3.3. Environmental Factors

There exist many possible dimensions along which an en-
vironment can be classified. Stochasticity in the transition
dynamics or reward function, dimensionality of the state
space, number of trajectories, or horizon length are all highly
relevant in off-policy learning. We quickly mention a pre-
liminary experiment here with the slippage factor since we
initially posited this as a measure of “difficulty” as we built
our environments. However, in contrast to our initial sup-
position, we find almost no discernible effect in the mean-
squared error of the estimated value with respect to this
slippage factor ε in certain cases. We use the mean-squared
error as the measure of choice for comparing performances,
which we define across n experiments as:

MSEV̂ (s) =
1

n

n∑
j=1

(
V (s)− V̂ (s)

)2
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We examine this in the context of the mixing environment,
since the number of edges here were hypothesized as the
central difficulty. Here, we fix a small horizon τ = 10
(which, by later experiments, all methods were found to be
of similar performance), small policy mismatch (where we
add and subtract some small positive constant δ ≈ 0 from
a fixed behavior policy to obtain a fixed evaluation policy),
and fixed number of trajectories N = 100. By the figure
below, we see that the methods are mostly invariant under
increased ε in this setting.

Figure 4. The slippage factor seems to have no discernible effect
on method performance when the policy mismatch is small. Note
that k = 50 experiments (or seeds) were ran for all figures reported
in this paper unless otherwise stated, and we do not report the 95%
confidence intervals for the sake of readability since the error is
roughly negligible for this many experiments. The only sources
of stochasticity across experiments are the transition probabilities
and the policy selection, and we must be careful not to confuse the
variance of the experiments with the variance of the underlying
methods. Importance sampling, for example, has a mean square
error that will be all variance (or high variance) since it is unbiased,
but the variance across many experiments could be quite low.

With the benefit of hindsight, this result is expected and illu-
minates the sense in which these methods are “model-free.”
We provide a proposition in the appendix to further explore
this finding in a deeper sense. For importance sampling
methods, at least, this can be explained as follows. Given
a starting state s0, the probability of a certain state-action
trajectory can be written as:

Pr{a0, s1, a1, . . . , sτ |s0, a0:τ−1 ∼ π}
= π(a0|s0)p(s1|s0, a0)π(a1|s1) · . . . · p(sτ |sτ−1, aτ−1)

=

τ−1∏
t=0

π(at|st)p(st+1|st, at)

The importance weights for πe and πb can then be written
as:

ρ =

∏τ−1
t=0 πe(at|st)p(st+1|st, at)∏τ−1
t=0 πb(at|st)p(st+1|st, at)

The transition probabilities therefore cancel and the im-
portance sampling ratio is not explicitly a function of this
slippage factor ε.

The experimental result also motivates the difficulty in
choosing environments that actually illuminate the differ-
ences as a function of the underlying environment; that is,
the chain environment and the mixing environment were not
quite as different as we had initially supposed.

4. Experiments
The main focus of this paper is attempting to solve a vari-
ant of the “chicken and the egg problem”: does the policy
mismatch or the horizon primarily determine the method
that we should choose? As we have seen in the introduction,
error accumulates quadratically in the horizon regardless of
how “good” the behavior policy is. However, if the policy
mismatch is small, this quadratic accumulation can be man-
ageable. How “small” must this distributional shift be for
each method? Does this change the rankings of the method
performances?
We first present two main experiments that later motivate
a more comprehensive third experiment to explore how
horizon and policy mismatch interplay for each of the four
methods.

4.1. Methodology: First Experiment

In the first experiment, we fix a known (not estimated) be-
havior policy πb for each of the chain and mixing environ-
ments with πb = [0.5, 0.5] since both environments have an
action space where |A| = 2. Note that, in general, we will
often drop the state dependence in our notation for π since
all policies are state-independent and completely uniform
for all s ∈ S for both πe and πb. While not particularly
realistic, this does provide a way to study the effect of a
(clearly) suboptimal behavior policy, and we emphasize that
the main problem of off-policy learning, in general, is the
distributional shift between πe and πb as opposed to the
actual optimality of πb. While we would need to stray less
from a close-to-optimal behavior policy, that we must stray
at all is the most pressing problem.
The motivation behind this specific choice for πb is that the
behavior policy has been chosen in a completely random
fashion with maximum entropy and no insight, but also ex-
plores enough of the state space to be usable.
Next, we fix the slippage factor ε = 0.2 for both the chain
and mixing environments. As discussed in the previous
section, this variable has little effect on the outcome and
thus we largely ignore this in our analysis. We also fix the
number of trajectories at N = 100 for each environment,
with horizon equal to the number of states for the mixing
environment and the 2N for the chain environment, which
are |Smixing| = 10 and |Schain| = 5, respectively.
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Next, to make the plots easier to read, we will define a
general, two action policy as π = [δ, 1 − δ] for δ ∈ [0, 1].
The plots below vary this δ for πe when we are in state si
and choose either “leave” or “stay” for the mixing or chain
environments. Since the policy only maps to two actions,
we could choose either of the two actions in the plots and
obtain the same performance orderings.
We measure the MSE across n = 50 experiments, where we
measure the difference of the true value of the starting state
obtained via dynamic programming (with specified, known
dynamics and reward function) and the estimated value of
the starting state.

4.2. Results and Discussion: First Experiment

The results in Figures 5 and 6 show that we achieve a global
optimum at δ = 0.5 as expected. This is where the policy
mismatch is exactly zero, however we wish to choose to
measure this mismatch. At δ = 0.5, we could choose any
of the methods as they would all perform equally well.
We also note that importance sampling estimators, outside
of this small neighborhood around δ = 0.5, seem to per-
form the worst on average as we expected. However, the
other methods do seem to shift their performance ordering
based in the specific environment and fixed environment
parameters.

Figure 5. With τ = 10, FQE seems to far outperform all other
methods. The variance of the importance weights seems to shift
the doubly robust method toward higher error than FQE alone.

With so many different environment parameters, the ex-
act cause of this ordering cannot be rigorously quantified
without more experiments that vary other aspects of the en-
vironment. Weighted importance sampling seems to mostly
outperform fitted Q evaluation for the chain environment,
but fitted Q evaluation seems to vastly outperform all other
methods for the mixing environment. Knowing that error
accumulates quadratically with policy mismatch over hori-
zon τ , we hypothesize that these specific orderings are a
result of the fixed horizons in addition to the actual policy
mismatch. This briefly motivates our second experiment,

which is a bridge to our more complete third experiment.

Figure 6. With τ = 10 for the chain environment, FQE is less
competitive. While Figure 5 appears more symmetric in its policy
mismatch, Figure 6 appears less so. This is likely an artifact of the
scale of the rewards at the first and last state.

4.3. Results and Discussion: Second Experiment

The second experiment shows a counterexample to a portion
of the first experiment. Here, we fix a small policy mismatch
for all methods, which corresponds to the δ ≈ 0.5 regime
in Figures 5 and 6. Note that because the policies are state-
independent and stationary, WIS and IS would be the same
if the policy mismatch was exactly zero. We then vary the
horizon to test how this ordering would scale if the horizon
was longer than τ = 10.

Figure 7. If the policy mismatch is about zero, then IPS weights
are a number close to 1 raised to the τ th power by our policy
construction. In log scale, we observe the quadratic scaling in
horizon we have mentioned so many times throughout this paper.

This figure shows a different story for the mixing environ-
ment. While FQE seemed to blow away the other methods at
τ = 10 for varying policy mismatches, Figure 7 shows that
if the policy mismatch is essentially zero, then IPS methods
scale more favorably with horizon. This interplay motivates
our final experiment.
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Figure 8. The y−axis of the heatmap specifies the horizon, while
the x−axis specifies the value of πe for the first action (or δ as in
the first experiment). The results are shown here for the mixing
environment.

4.4. Results and Discussion: Third Experiment

In the first experiment, we varied the policy mismatch but
not the horizon. In the second experiment, we varied the
horizon but fixed a small policy mismatch. This allowed us
to observe the global minima of error where the policy mis-
match is zero, and to see the quadratic scaling of error with
respect to horizon. However, neither of these experiments
alone can inform us about the original question, which is
“Should horizon or policy mismatch come first in our deci-
sion tree?”
The third experiment combines the first two experiments
by varying both horizon (on the y−axis) and the first ac-
tion behaviour (δ on the x−axis), fixing the behavior policy
at πb = [0.5, 0.5] again, and then plotting the log mean-
squared error as the “heat” in the heatmap. These results are
shown in Figure 8, and they are highly informative.
We first note the ranges of the log MSE scales for each
method. IS has an error range of 15; WIS has an error range
of 8; FQE has an error range of 5; DR-FQE has an error
range of 14. Across all combinations of horizon and policy
mismatch, FQE is highly dependable. However, we also see
that the combination of the importance weights with FQE
can lead to substantially improved performance within a
specific range of policy mismatches.
Perhaps the most compelling part of these heatmaps is the
“width of feasibility” for the IS and DR-FQE methods. We
see that for longer horizons and more pronounced mis-
matches, these methods quickly become untenable. How-
ever, the hybrid model performs well in the neighborhood
δ ∈ (0.37, 0.64), while the IS estimator performs well only
in the neighborhood δ ∈ (0.48, 0.53). By combining the
IPS and direct methods, we can allow greater policy mis-
match and still observe competitive performance even with
long horizons. While FQE at least does not degenerate to
the degree that IPS methods do with respect to horizon and
policy mismatch, the bias induced by our linear model lim-
its its ability to take advantage of small mismatches and
achieve lower errors.
By these findings, we question why the policy mismatch
should not dominate the horizon in the ordering of the deci-
sion tree. We typically have some degree of control over the
target policy in the greater off-policy learning context. We
can constrain the mismatch in some way during value itera-
tion, but the horizon is fixed and given. Thus, we can choose
which regime we exist in during our decision process. How-
ever, the width of feasibility for the policy mismatch is quite
small: we can only move so far away from the behavior
policy. In contrast, especially for methods like FQE, the
horizon seems to have less of an effect in the limit. [IS THIS
AN ARTIFACT OF THE LOG SCALE???]
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5. Conclusion and Future Directions
In this paper, we explored importance sampling, fitted Q-
evaluation, and variants thereof for the problem of off-policy
evaluation benchmarking. The presented experimental find-
ings challenge the

6. Appendix
Proposition 1: Given slippage or stochasticity factor ε > 0
and state-independent, stationary policies πe and πb on
environment M, M can always be re-interpreted as a
deterministic environment with a fixed policy mismatch
defined as sups∈S

πe(at|st)
πb(at|st) .

Remarks: This requires not so much of a “proof” as it
requires confirmation that the policies will still lie on the
probability simplex regardless of interpretation. The policy
mismatch is already constant, and every point attains the
supremum since the policies are themselves constant and
independent of state. We simply collapse the stochasticity
factor into the policies, turning state-action pairs into state-
action-epsilon tuples. We can then treat M as functionally
deterministic since our policies are now just the probabilities
of actually going right or left. For the case |A| = 2 we let
ε⃗ = [1− ε, ε], for example, giving:

π∗
e(left|st) = (1− ε)πe(left|st) + (ε)πe(right|st)

π∗
e(right|st) = (1− ε)πe(right|st) + (ε)πe(left|st)

where Pe[go left] + Pe[go right] = 1. Of course, ||ε⃗||1 = 1
and ||π⃗||1 = 1 implies 2ε⃗ · π⃗ = 1, so we are still on the
probability simplex.

■
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