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Abstract

Decentralized or “local” notions of differential privacy [1] predate the rigorous, centralized
definition of differential privacy [2] by over 50 years. More recent work has explored intermediate
models sitting between the centrally-curated and local paradigms, each with varying purposes,
trust assumptions, and statistical utility that preserve user privacy. This paper will prepare the
reader to explain, compare, and implement the shuffle and pan-private models. Working from the

local model, we motivate the need for varying levels of trust and explore when those trust
assumptions prove appropriate through both the engineering and formal mathematical perspective.
Lastly, we provide an example algorithm comparison to further illuminate the differences in the

models.

1 Introduction

In the central curator paradigm of differential privacy (DP), a trusted party aggregates raw user
data, stores or maintains this data, and releases noisy estimates to user queries using the original
(ε, δ)−DP definition of privacy as given in [2]. Of course, this paradigm implies that the honest
curator is able to aggregate, store, and maintain raw user data in a cryptographically secure fashion.
In contrast to the centrally-curated paradigm, the local paradigm assumes no trust at any such point
in the data pipeline: users run a randomizing mechanism R on their individual data before sending
it to an (untrusted) aggregator [3]. This lack of trust statistically decouples user-level data from its
original sender and preserves (ε, δ)−DP privacy regardless of subsequent use. However, the noisy
message may still be linked to the user, and this statistical decoupling comes at a heavy price. Even
for simple tasks like private distributed summation or histogram construction, the local model incurs
additive errors that scale with the square-root of n or square-root of both n and log(d), respectively,
whereas this error is constant (independent of n or dimension d) in the central paradigm [4] [5] [6].

This scaling greatly limits the statistical utility of the local model to all but the massive “data
black holes” like Google [7] and Apple [9]. Even with a massive population of users, the local model
maintains difficulties with statistical utility and security concerns as result of this scaling. As the
ε−budget of any randomized algorithm decreases or the dimensionality d of the data increases, the
aggregator must become more sensitive to the signal inherent in the data. Because local differential
privacy (LDP) considers all differing inputs x, x′ in the input domain, as opposed to the “change-
one” definition the central model, this signal is especially weak. While the central curator may
consider entire databases that merely differ by one row, the analyzers of an ε−LDP protocol must
consider an aggregation of individual users whose data is completely divorced from its senders given
that each user is directly linked to their own data. Finding the “needle in the haystack” is thus a
difficult statistical question, but also presents usability concerns from an engineering perspective.
An adversary that can change the distribution of secure user messages, even if only slightly, can
completely destroy the utility of the data. Due to the local protocol noise scaling, such a shift may
only require a handful of adversaries that lie about their inputs. For any noninteractive protocol
with m dishonest users, the distribution of an ε−LDP algorithm can be skewed in a manipulation
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attack by a factor of Θ
(

m
√
d

εn

)
[19]. While the local model is explainable to users and often com-

putationally efficient to implement, further mechanisms for ensuring honest user-level interaction
is necessary in any framework that assumes an adversary will exploit any possible vulnerability if
given an avenue to do so.

As such, a “fully-trusted” and “trustless” dichotomy of differential privacy may only be possible
in a narrow (or less charitably, imaginary) sense. Even for “trustless” local paradigms, the protocol
implementer may also be the one receiving the data as in the case of Apple [9]. Whether at the level
of the user or curator, we must place trust somewhere in varying degrees along the data pipeline.
Overcoming manipulation attacks, for example, requires ensuring honest user behavior at the level
of computation or, more specifically, efficient cryptographic techniques for each node in a distributed
system. Intermediate models attempt to balance these tradeoffs by placing this point of trust some-
where between the user and curator. This placement may overcome one problem while exacerbating
another, and this paper will attempt to highlight these tradeoffs where they exist. We will explore,
in depth, two of these intermediate paradigms: the shuffle and pan-private models. The shuffle
model [18] is a specific instance of the more general Encode, Shuffle, Analyze (ESA) architecture
that replaces the trusted curator with a trusted shuffler. In the pan-private model [27], an algorithm
receives a stream of raw data, incrementally updating its internal state with information from a
new element in an online setting. The conclusion of the stream results in a differentially private
function of the internal states, where at one point, any one of these internal states may be leaked
to an adversary. Thus, in contrast to the shuffle model, whose definition is closer to local or central
definitions with differing post-processing, the pan-private model attempts to make the joint distri-
bution of any possible internal state and the output insensitive to individual elements of the stream.
While the use cases of these models seem orthogonal, we will explore surprising connections between
the two, as well as tie each respective frameworks back to the more familiar central and local models.

Lastly, in §8, we provide an example of uniformity testing algorithms in the various paradigms.
We show that the sample complexities imply a notion of ordering amongst these algorithms in
terms of statistical utility. In the paper, we introduce the paradigms in the sequence of that utility
starting from the poorest scaling in terms of error or sample complexity: from the local model in
this introduction, we move to the shuffle, robust shuffle, and then pan-private paradigms, exploring
the necessary trust assumptions along the way.

2 PROCHLO: Encode, Shuffle, Analyze (ESA)

The Encode, Shuffle, Analyze (ESA) [11] is a flexible privacy-preserving framework built by Google
to monitor client software behavior. While the shuffle model is indeed an instance of ESA, the
architecture is broad enough to discuss the shuffle, local, and central models in its context, and also
provides an optimal starting point to discuss the engineering challenges of differential privacy in a
practical setting.

2.1 Three Generations of Systems: Why PROCHLO?

We consider distributed systems in a DP sense across three “generations” of approaches [12]. As
motivated by the example of manipulation attacks, there exists an imperative to emulate the central
paradigm beyond direct statistical utility, instead emphasizing cryptographic and security-related
factors. Software attestation is of critical importance to defend against malicious code, especially as
compute and distributed systems become simultaneously ubiquitous. The seminal DP definition is
useful precisely because it is limited to an information-theoretic perspective. However, this implies
that, in practice, differential privacy is always embedded into larger systems of which it is one sub-
component. Though we will consider the DP formalisms in subsequent sections, there exists a lineage
of differential privacy systems built for the wild, each balancing statistical utility, computational fea-
sibility, maintainability, and explainability. The first generation of these systems, secure multiparty
connection [13], directly attempted to simulate a central paradigm through n−party protocols that,
in principle, could implement any desired query or computation through distributed interactivity.
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Noise generation is cooperatively shared and collected across participants, eliminating the need for
a trusted administrator while retaining the required noise level to meet (ε, δ)−DP given that at
least two-thirds of participants are honest. By securing processing channels through encryption,
adversaries become limited to (probabilistic) polynomial time computations, which allows values to
be shared, verified, and reconstructed. By analogy, each party holds a broken shard of plate, and
even if a fraction of those shards come from different plates, the whole plate can be glued back
together and used at no loss in utility. While this approach is backed by a rigorous framework, this
modification of in principle can be tenuous in practice: with many moving parts, this is not only
computationally difficult but often unclear how to “glue” each node value back from algorithm to
algorithm. This motivates the second-generation of distributed systems with untrusted servers, or
local frameworks.

Despite the well-documented shortcomings of the local protocol, there are several benefits to
this second-generation of distributed systems. While the addition of noise at a user level is cheap
and efficient, the collection process largely avoids the pitfalls of secure multi-party computation, as
aggregation requires no special structure. Furthermore, there exists a rigorous formalism behind the
framework that also happens to be highly explainable to all involved stakeholders. Thus, despite
the downsides, there exists several reasons for such a system in practice, which has a variety of
implementations. Most notably, we highlight RAPPOR [7], a previous privacy-preserving software
monitoring tool also built by Google. The RAPPOR framework ensured pure local differential pri-
vacy (LDP) data without any assumptions of client-side trust. This introduced two specific problems
of note: first, even with hundreds of millions of users, the utility of this LDP data was limited to
very specific use cases (namely, very common problems of high mass concentration, like a power
distribution); second, developers and clients may have heterogeneous data pipelines with varying
permissions, privacy guarantees, existing tools and processes, which makes unclear the ability to
combine this data for statistical insight. In the task of measuring application programming interface
(API) usage, for example, several thousand applications and hundreds of APIs may be of relevance:
to obtain a clear signal in such a scenario requires over one hundred times the number of humans
on Earth [8].

As such, a third-generation of distributed systems has arisen to combine aspects of differential
privacy with fast, efficient cryptography. ESA builds upon the shortcomings of RAPPOR, sharing
similar goals to earlier cryptography-based privacy-protection and hybrid systems like BLENDER
[14], federated learning [15], or Prio [16]. BLENDER considers a combination of users that contribute
to either of the central or local model (termed “opt-in” or “client” users, respectively). In the context
of local search, this dichotomy has uses when beta versions of software are released, and privacy
preferences may differ among early adopters. The data is then funneled through a blending stage
to extract information from the union of these two user groups. Federated learning was conceived
in the context of shared machine learning, where a central server coordinates a network of devices
that locally store training data and locally run, for example, stochastic gradient descent on this
training data. This allows the devices to send the updates instead of the data. The problem of
secure aggregation is the process of combining these updates (which may themselves be sensitive)
for server use. This is done, roughly speaking, by batching the data in a structured fashion. Prio
computes aggregate statistics through a variant of verifiable computation, where the client must
prove correct function execution to the server. As such, these frameworks incorporate aspects of the
first and second-generation technologies. From ESA, however, a new formalism emerges.

2.2 ESA Framework

The key insight of ESA is that the noise scaling under a system like RAPPOR can be avoided by
partitions of correlated data with nested encryption to ensure that only user-trusted parties are
granted processing permission for analysis. The framework then also overcomes the second difficulty
of RAPPOR (heterogeneous pipelines) by explicitly mapping permissions from clients to servers.
Thus, ESA is designed in modular fashion. This makes the framework highly flexible: differential
privacy can be ensured at any point of control, or may not be ensured at all if desired. These points
of control can be decomposed as follows:
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1. Encoder : The client-facing point of control is the encoding step. Users specify trust assump-
tions through a nested encryption step, granting access permissions and transmitting prepared
data to a network of trusted shufflers. Data can be prepared through adding noise or frag-
mentation or any desired transformation, and is then marked with a crowd ID for use by the
specific shuffler.

2. Shuffler : The trusted shuffler, assumed to be honest but curious, has access to this ID and a
host of metadata associated with the user, which is useful for admission control. However, the
shuffler removes the metadata for anonymization, and uses the crowd ID to batch the data via
thresholding: the shuffler queues the stripped, shuffled data and forwards this data only when
a (potentially randomized) threshold has been met, which prevents adversarial analyzers from
timing and observing the ordering of the queue. Note that there are potentially many shufflers
receiving a single instance of randomized user data.

3. Analyzer : After the shuffler forwards the anonymized batch, the analyzer decrypts, stores,
aggregates, releases, or potentially attacks the received batch. In the actual PROCHLO im-
plementation of ESA, there are almost always keys associated with a specific analysis. While
the publicity of the analyzer module can vary from application to application, permissions
are often restricted only to a small subset applications and APIs. Therefore, attacks may be
considered in the post-analysis stage if ones wishes to conceptualize all three ESA modules as
one closed system as opposed to a closed encoder-shuffler framework.

The ESA framework is thus general enough to consider the collapse or collusion of combinations
of the points of control as three paradigms of differential privacy–central, local and shuffle models–
given that noise is indeed added at the appropriate point of control. The collusion of an adversarial
analyzer and shuffler reduces to the local model when noise is added in the encoding step; full trust
at the encoding, shuffling, and analyzing steps reduces to the central model when noise is added at
the analyzing step; the trust of the shuffler, but not the analyzer, motivates the shuffle model and,
essentially, its variants of the pure shuffle paradigm (trusted encoder) and robust variant (untrusted
encoder).

2.3 Shuffling: Trust and Hardware

As a lightweight cryptographic implementation, PROCHLO introduces unique cryptographic prim-
itives and an oblivious shuffling mechanism to further guarantee user privacy. While the encoder
may enforce LDP, the shuffler is fully trusted and thus a central aspect of the ESA framework and
its implementation. These contributions enable two possibilities of note: first, with trusted hard-
ware, the shuffler and analyzer may be hosted by the same organization; second, by cryptographic
blinding, the shuffler may be distributed across a network of parties. PROCHLO utilizes Intel’s
Software Guard Extensions (SGX) [17] to, in principle, eliminate the need for a distinct trusted
third party. With SGX, a user could transmit data to a shuffler hosted by the analyzer even if the
analyzer is untrustworthy, given the hardware to perform remote secure computation. This is just
one possible approach to the software attestation problem motivated earlier in the first generation
lineage, but presents several problems of note. First, this particular hardware is vulnerable to a
subset of attacks (passive address translation attacks, firmware attacks on the Management Engine,
etc.), and as such, may not be fully trustworthy. Second, the private memory constraints are often
far too limited for scalable systems the size of Google’s, and the shuffling mechanism must therefore
be as efficient as possible. As such, PROCHLO presents a new oblivious shuffling algorithm for this
purpose. In general, these algorithms compare and swap items in a data-independent fashion, whose
high-level motivation is much like a simple sorting algorithm. However, given the scalability of such
sorting primitives in the context of limited memory constraints, the PROCHLO shuffler manipulates
encrypted items in buckets small enough to fit in private memory. The specific shuffle protocol will
dictate the number of messages and bits per message sent, i.e. the size and number of these items.
For example, there exist summation protocols that require multiple single-bit messages, and others
that require single multiple-bit messages. Therefore, the number of rounds required for this memory
bucketing can vary based on the specific use case at hand. The shuffling mechanism executed on this
hardware is also of critical importance since the permutations on the user data are done with public
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operations. Even if the contents of the computation are hidden correctly by SGX, an adversarial
shuffler could still track and reverse engineer the actual operations.

Lastly, the shuffler also performs (potentially randomized) cardinality thresholding on the batches
of stripped, shuffled data or otherwise count and filter the crowd IDs. However, in the case that the
analyzer hosts the shuffle, the distributions or values of the crowd IDs must remain hidden to the
greater organization. These IDs are crucial since they specify user permissions and route messages
to various shufflers, but they also allow for direct linkage to a specific user. As we explore in future
sections, this shuffling step introduces privacy amplification that allows us to add less noise at the
encoding step. Taking advantage of this result without securing crowd IDs, however, results in worse
privacy guarantees for users. PROCHLO allows the organization to see the filter threshold since the
batch size would ostensibly be visible to the analyzer anyway during the forwarding process, but
SGX allows this thresholding computation to fit in private memory.

3 The Shuffle Model

The shuffle model is a particular instance of ESA with a rigorous formalism developed in the past
few years. In the shuffle model, users add noise directly to their data, which is then sent to a trusted
shuffler and subsequently released to the public. For randomizer R and analyzer A, this is defined
as follows:

Definition 1 (Shuffle Differential Privacy): A protocol P = (R,A) is (ε, δ)-shuffle differen-
tially private if, for all n ∈ N and w ∈ {0, 1}r, the algorithm (S◦Rn)(x⃗) := S(R(x1, w), . . . ,R(xn, w))
is (ε, δ)-differentially private. [18]

Note here that the (semi)public random bit w can be fruitfully conceptualized as the crowd ID
from the ESA encoder step; this may or may not be sensitive in the context of the shuffler, though
obviously should never be revealed to the analyzer. Typically w and S are either dropped or ab-
stracted in proofs of statistical utility: by post-processing, the composition will be at least as private
as the randomizer R allows, and we assume that the shuffler is indeed honest. Note also that this
definition has slight variations in practice, but is still labeled “shuffle-DP.” Among the first privacy
amplification results [20] applies Rn after S. For a single fixed randomizer, the two definitions are
indeed equivalent. However, the “shuffle-then-randomize” definition may be of relevance with sets
of randomizers. Consider the case of k distinct randomizers. Each could individually be εk-LDP but
have disjoint output spaces over the set, such that their combination could only be kept differentially
private with initial anonymity in the shuffling step. In practice, because ESA is a true data pipeline
with more moving parts, seemingly small details like these can introduce more potential failure
modes. However, that flexibility manifests itself in design decisions that can overcome limitations of
the local or central model.

The interaction between the shuffler and the randomizer provides privacy amplification by allow-
ing the individual users to “hide” among the crowd or batch. By trusting the shuffler, we can expect
to gain some additional statistical utility even with users applying direct noise via R. Regardless of
the composition order, however, this definition implicitly assumes that all users follow P honestly in
addition to the trusted shuffler. Consider a rather extreme case where adversaries control n − 1 of
the n inputs xi in batch b. By failing to execute R on the n− 1 entries, the output (S ◦Rn)(x⃗) can
simply be differenced with the set (x1, . . . xn−1) to obtain the honest user’s data. This user’s data
will no longer satisfy the same level of differential privacy as before, especially if the local random-
ization noise level is known across all users. Thus, similarly to the local model of DP, the encoder
step may not necessarily be trusted. By “dropping out,” adversaries can attack the shuffle model
even with a cryptographically secure shuffler. This motivates the notion of robust shuffle privacy,
which is a stronger paradigm than the shuffle model.
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Definition 2 (Robust Shuffle Privacy): For continuous, positive, and non-increasing func-
tions ε̃(γ) < ∞, δ̃(γ) < 1 for all γ ∈ [τ, 1], τ > 0 a shuffle protocol P = (R,A) is (ε̃, δ̃)−robust
shuffle-DP for n users such that for ⌈γn⌉ ∈ N, the algorithm S ◦ R⌈γn⌉ is (ε̃(γ), δ̃(γ))-DP. Essen-
tially, γ fraction of the users follow the protocol. We will denote this as (ε, δ, γ)-robust shuffle DP [18]

While shuffle privacy does not imply robust shuffle privacy, many algorithms that are shuffle
private are robustly shuffle private (or otherwise may degrade linearly with m). The shuffle-private
algorithm presented in §8 that is derived from Algorithm 2 does not satisfy robust-shuffle privacy,
however, and typically we observe different sample complexity or error scaling for each. More details
on the robust shuffle private uniformity tester can be found in [33]. Though we will focus on the
single-message, noninteractive shuffle protocol for the sake of simplicity and clarity, multiple rounds
of communication can greatly enhance protocol ability and are the focus of many recent, more
cutting-edge results. There are two flavors of local protocol interactivity, sequential and full, that
inform the potential shuffle modifications. In the former, a user only sends one message to analyzer,
but the encoding step can depend on the (private) totality of messages sent by other users. In the
latter, a user can communicate with an analyzer multiple times, where the totality of communications
must be kept differentially private. The fully interactive shuffle protocol has been shown to be able
to simulate the central model: for any randomized algorithm M that is (ε, δ)-DP in the central
model, there exists a two-round fully interactive shuffle protocol that simulatesM [22].

3.1 Separations and The Privacy Blanket

A central notion for intermediate models is that of the “privacy blanket,” which decomposes any
local randomizer R into a linear combination of a “blanket” (or pure noise) B and user-dependent
distribution D [10]. Specifically, there exists a parameter p such that R(x) = pB + (1 − p)D(x).
Approximately pn parties submit pure noise, while (1 − p)n parties submit their true value. This
corresponds to a histogram on the union of these two sets of parties. We can thus view all shuffle-
private algorithms as a variant of secure addition, where the privacy is derived from appropriately
calibrating p to provide (ε, δ)−DP, which will necessarily depend on the algorithm at hand. For
example, an ε0−LDP Laplace mechanism on the unit interval satisfies p = e−ε0/2, which we note is
a decreasing function of ε0; that is, for larger privacy budgets, we can add less noise to the blanket
decomposition. This value is computed for general measures on R : X → Y, where we denote µx

as the output distribution. In [10], the authors consider a characterization of the total variation
distance over these measures, defined as:

DTV (µ||µ′) = 1−
∫

min{µy, µ
′(y)}dy

The key insight of the paper is to generalize from pairs µ, µ′ to arbitrary sets of measures. For a set
Λ = {µx}x∈X over Y, the total variation similarity is defined as:

pΛ =

∫
inf
x

µx(y)dy

This notion is thus general, which yields:

Theorem 1: Every ε0−LDP randomizer R admits a unique maximal mixture decomposition
where one of the components is independent of the input, forR(x) = pB+(1−p)D(x) and eε0 ≤ p ≤ 1
[10]

A key result of [10] is a shuffle-private optimal summation protocol for bounded-value sums,
which shows that the shuffle model sits squarely between the local and central models for linear
problems. As we recall from the introduction, the mean-squared error is Ω(

√
n) for the local model

and O( 1
ε2 ) for the central model. For single-message, shuffle-private protocols, however, the optimal

summation protocol achieves mean-squared error of Ω(n
1
3 ). Because the given estimator is unbiased,

this essentially gives the scaling of the variance of the protocol estimator.
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4 The Pan-Private Model

As motivated in the ESA framework, we can view the central, local, and shuffle paradigms as vari-
ations of trust in the encoder, shuffler, and analyzer, where the shuffler does indeed exist at all. In
essence, these paradigms are combinations of compositions of differentially private functions, where
the “privacy wall” is enforced at the appropriate step. The pan-private model fits less clearly into
this interpretation–though as we will explore, there are non-obvious and surprising connections be-
tween the paradigms. In a streaming algorithm, user data xt populates a server or queue at time
t ≤ T . The server then computes on xt with some algorithm A, which produces an internal state
St, or A(xt) = St. At the end of stream, where t = T , the protocol outputs some Z. Previous
approaches to this problem included techniques like subsampling: much like a shuffler, a curator
could batch inputs and randomly select sample from this batch. While the probability of selecting
any one individual decreases inversely with respect to the batch size, timing attacks and breaches
are significant problems of this approach.

In the pan-private model, we mostly trust this server, but with an essential caveat: while a
potential adversary sees Z as in any of the typical paradigms, at any one point t, the internal state
St is completely exposed. We assume that the data x can be discarded after server processing such
that the adversary cannot access the inputs at t. Thus, we trust the curator to honestly collect and
process our data, but not store it in perpetuity. This scenario may be reasonable or likely under
changes in or the pressure of law (considering subpoenas or mandated transparency, for example),
human factors (privacy policy reversal), or non-authorized access to the stream, whether internal or
external to the curator. The intention of the pan-private model is to ensure that the joint distribu-
tion of the output and any internal state is private in a DP sense. Unless otherwise stated, we allow
for the adversary to fully access only one of these internal states St in addition to Z, but there exist
several results for multiple and continual intrusions.

Definition 3 (Pan-Privacy): A protocol is (ε, δ) pan-private if the protocol Pt(x) = (At(x1:t), Z(x))
is (ε, δ)−DP for all t ∈ [T ] [27]

Pan-privacy has various levels of interactivity much like the shuffle or local model. In this work,
we highlight two: user-level and record-level pan-privacy. In the former, one user may contribute
multiple elements to the stream, while in the latter, neighboring streams differ in at most one
element. In the results and figures presented here, we focus on the latter definition.

Figure 1: A pan-private data flow. There now exists a time-dependency to the stream, and the
adversary also gets complete access to one state St for some t ∈ [T ]

We also note that there are differing levels of adversarial access across variations of pan-private
models. While we present a definition (and algorithms) for the case where only one internal state is
fully exposed, more leaks can be incorporated into the framework at the cost of more noise injected
into the stream.
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5 Connections

This survey has largely focused on the trust assumptions of the various paradigms because there
may exist variants of each respective model that allow us to simulate the statistical utility of the
other models within that particular framework. While this is not always the case as, for example, we
simply cannot perform certain tasks in the local model that we can in the central model, intermediate
models exhibit adaptability even where the connections are not immediately obvious.

5.1 Shuffle and Pan-Privacy

In the shuffle definition we have considered, a database is distributed amongst n users, where each
user holds exactly one element. In the case of record-level pan-privacy, where neighboring streams
differ in at most one element, one user contributes data xt at time t, which is then discarded after
updating the internal state of the stream. By the definitions considered, it is unclear whether or
not the respective use cases can even translate, much less if one model implies the other. Due to
a clever construction, however, we can simulate robust shuffle-private protocols in a pan-private
protocol, thus implying a notion of ordering between the shuffle and pan-private models, given that
the robust shuffle definition does not necessarily imply pure shuffle privacy. However, we note that
generic structural conversions between the robust shuffle and pan-private algorithms are lacking in
the literature.

Theorem 2: Let P = (R,A) be an (ε, δ, 1
3 )-robust shuffle DP α−uniformity tester with sample

complexity n. Given more than n elements, there exists an (ε, δ)−DP pan-private tester with sample
complexity n

3 built from this robust shuffle tester. [23]

In this construction, the pan-private algorithm maintains its internal state with shuffled messages,
using a combination of actual user data and ⌈2n/3⌉ draws or “dummy noise” U ∼ R(1). The stream
is initialized with ⌈n/3⌉ of these draws, processes the stream xt, and is finally capped with another set
of ⌈n/3⌉ draws before outputting Z. This dummy noise can be conceptualized as a set of malicious
users m from the robust shuffle privacy definition. As we will see below in §6, this idea surfaces
in actual algorithm construction for pan-privacy. We can initialize and cap private computations
with noise, which allows us to effectively treat the stream of data as a single batch instead of online,
sequential timesteps. This is how we treat our pan-private algorithms in the code in §8.

Figure 2: Simulating the robust shuffle model in the pan-private streaming problem. Note that the
in this construction, the adversary sees an exposed internal state from the middle (i.e. non-uniform)
third of the stream

6 Uniformity Testing: An Example

Hypothesis testing is a standard statistical procedure. In uniformity testing, we reject or fail to
reject the null hypothesis that some data D with m elements is uniformly distributed. Considering a
continuous distribution with d ∈ D ⊂ [a, b], a simple (non-differentially private) test for uniformity
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bins D into k bins, taking the difference between the expected number of elements in bin k (i.e. m
k )

and the actual number of elements zj in bin k, squaring this difference, and dividing by the expected
number of elements again [30]. We then sum over these elements to obtain a statistic:

Z2 =

∑k
i=1(zj −

m
k )

2

m
k

that has distribution Z2 ∼ χ2(k − 1), which can then used to obtain a p−value for the desired
confidence level. We will present and compare a handful of algorithms to compute a variant of this
statistic in a differentially private manner. The problem statement in the privacy literature here is
a bit different than this initial formulation, and illuminates some of the statistics versus computer
science tradeoffs we often make under various constraints. In α−uniformity testing, we attempt
to report “uniform” with probability 2

3 with D comes from uniform U , and “not uniform” with
probability 2

3 when ||D − U|| > α [26]. The main focus of this problem formulation (in order to
meet these two requirements) is that of sample complexity: how many m are required to achieve
this under differential privacy? In contrast to the original χ2 formulation, we are only interested
in obtaining a clear separation bound given we have “enough” samples. This does not imply that
the resulting (pseudo) χ2 statistic is “good” in a statistical sense, however (along the dimensions of
variance, consistency, etc.). Most of the papers in which these algorithms are presented do not even
report (or at least highlight) these standard estimator properties at all!

In a real-world hypothesis test, of course, we likely do not have access to an unbounded amount
of data. Data collection is expensive and error-prone. A more practical use case for these sets
of algorithms is checking whether or not a random number generator is truly random: here, data
generation is cheap and sample complexity is (mostly) no big deal for low-polynomial sample com-
plexity. Even still, several problems may arise. In [31], the authors consider a Laplaced χ2 where
Yi ∼ Lap( 1ε ) is added directly to zj before the uniformity test is applied. However, the variance of

this statistic is bounded below by 20k3

ε4m2 even when D is truly uniform. While the cubed term in the
numerator looks scary, the sensitivity of these statistics (and variants thereof) are also quite high,
so the scaling on ε can be gruesome as well. We provide a summary of the complexities below, and
delve into more details of the algorithms:

Local∗ Robust-Shuffle Pan-Private∗ Central∗

Complexity in
m

Θ
(

k
α2ε2

)
O
(

k3/4

αε

√
log 1

δ

)
Θ
(

k2/3

α4/3ε2/3

)
Ω
(√

k
ε2

)
Table 1: Algorithms marked with an asterisk denote optimal protocols. Note that k denotes the num-
ber of bins, α is the separation coefficient, and ε and δ are the usual privacy parameters in DP. The
scaling with k shows clear separations between the various uniformity testers.

In this paper, we examine and implement 1 two specific uniformity testing algorithms that show
the differences in sample complexities across the local, shuffle, and pan-private models. In the code,
we also go more in-depth on the statistical properties of the estimators that inform their practi-
cal utility. The main differentiating factor across these algorithms is the threshold computation,
which is derived to achieve the probability separation. Threshold aside, the algorithms are other-
wise simple and conceptually identical: they operate by creating a noisy histogram and computing a
bias-corrected version of this χ2 statistic. The first algorithm is a pan-private uniformity tester that
operates via a “Poissonification” of the stream that effectively randomizes its starting or stopping
point, adding Laplace noise at its beginning and end to protect its elements and output, respectively.

This algorithm achieves sample complexity m = Ω
(

k3/4

αε +
√
k

α2

)
, which is not quite optimal, but [28]

considers a fine partition of the domain [k] that achieves sample complexity Ω
(

k2/3

α4/3ε2/3
+

√
k

α2 +
√
k

αε

)
.

We consider the suboptimal protocol here for the sake of simplicity, but this improved version only
requires a modified threshold in practice.

1Code for our implementations can be found at https://github.com/jonathanhuml/cs208_final_project
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The Poisson sampling step of Algorithm 1, in particular, may be a point of confusion. Our
interpretation here is that we access to at most m′ samples. Thus our data is technically of size m′

instead of m. However, we randomly start or stop the stream depending on the relative ordering
of m and m′, which affords extra privacy protections. Since the center of this randomization is m
itself (also consider that the number of cases where m > m′ and m < m′ is roughly symmetric as
m→∞), we consider the sample complexity in terms of m instead of m′.

Algorithm 1 Pan-Private Uniformity Tester [28]

Require: ε > 0, domain [k], closeness parameter α, data x⃗ ∈ Rm
′

Sample m′ ∼ Poisson(m)

Set threshold TU = α2m
100 + 4k2

ε2m + 24
√
2k3/2

ε2m + 16
√
2 k
ε
√
m

+ 8
√
2k3/2

εm

Initialize private histogram H ← Lap( 1ε )
k ∈ Rk

for t ∈ [m′] do
if xt ∈ Hk then

Hk ← Hk + 1 ▷ Increment the appropriate histogram bucket
end if

end for
H ← H + Lap( 1ε )

k ∈ Rk

Z ′ ←
∑k

i=1
(Hi−m

k )2−Hi
m
k

▷ Compute pseudo-χ2 statistic

if Z ′ > TU then
Output “non-uniform”

else
Output “uniform”

end if

The local and shuffle models are derived from Algorithm 2 [29], which are separate from Al-
gorithm 1. However, we note that with uniform noise placed in appropriate proportions at the
beginning and end of the stream in Algorithm 1, we could, in theory, use Algorithm 2 within Al-
gorithm 1 as we found in §5. This would provide the same level of (ε, δ)−DP, but the statistical
guarantees on the estimators could be (likely are) far worse. The original local algorithm is based on

the “private-coin” RAPPOR model, and achieves sample complexity m = O
(

k3/2

α2ε2

)
. However, using

a “public-coin” mechanism, it is possible to achieve a bound that is instead linear in k, which has
also been shown to be optimal [28]. Our shuffle implementation is based on a theorem of [32] that
finds an ε0 for the local randomizer of the shuffle mechanism given a fixed ε for any local mechanism,
which is of course increasing function of m: given ε, we can add less noise (have a larger privacy
budget) for the shuffle randomizer by the privacy amplification of the shuffler. While this theorem is
quite useful, tight bounds for a pure shuffle-DP uniformity tester (to the best of our knowledge) are
lacking. In [33], the authors consider a private-coin, robust shuffle mechanism that achieves sample

complexity m = O
(

k3/4

αε

√
log 1

δ +
√
k

α2

)
.

The main takeaway from this section is the relative ordering of the sample complexities. We see
improving sample complexity in m (improving with respect to k) as we move from the local to central
models, respectively. Of course, in tying the paper together, we note that many of these paradigms
overlap: we can often simulate one framework within another under very structured assumptions.
Where the paradigms differ most are the trust assumptions. Here, even with “better” theoretical
properties, we may elect to to choose an algorithm with higher sample complexity because the user-
facing system is best equipped to handle those trust assumptions. If not for this important point, we
could simply stop at the central model (as seen in Table 1). Differential privacy is always embedded
into larger systems, and part of the difficulty of engineering these systems is the balance between
this sample complexity or noise scaling and the actual use case or potential breaches of privacy that
lie outside of the general differential privacy framework.
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Algorithm 2 Locally-Private Uniformity Tester (RAPPOR-based) [29] [7]

Require: ε > 0, domain [k], closeness parameter α, data x⃗ ∈ Rm

aR ← eε/2−1
eε/2+1

bR ← 1
eε/2+1

for i ∈ [m] do
yi ←ENCODE(xi) ▷ Turn xi into a k−ary vector
zi ←PERTURB(yi) ▷ Flip bits of the k−ary vector w.p. bR

end for
AGGREGATE(zi) ▷ Add the counts and debias, setting Nx =

∑
j∈[k] zj−mbR

aR

Z ′ ←
∑k

i=1

((
Nx − (m− 1)

(
aR

k + bR
))2 −N − x

)
+ k(m− 1)

(
aR

k + bR
)2

if Z ′ >
m(m−1)a2

Rα2

k then
Output “non-uniform”

else
Output “uniform”

end if

7 Conclusions

In this paper, we explored recent results on the shuffle and pan-private models. The shuffle model
grew from the Encode, Shuffle, Analyze (ESA) architecture, which sought to build upon the short-
comings of the local model and its RAPPOR implementation. In this framework, a trusted shuffler
receives locally randomized user input, where the shuffler provides a privacy amplification that allows
less noise to be added byR. Before the shuffle model, the pan-private model was conceptualized soon
after the seminal, central definition. This online streaming algorithm maintains its privacy even if
one of the internal states is completely exposed at any time. We found that the robust shuffle model,
a variant of the shuffle model that protects against drop-out attacks, is able to be simulated in the
pan-private framework, thus connecting these apparently separate models. Lastly, by considering
the use case of uniformity testing, we were able to observe sample complexity separations that show
us how each framework scales with respect to one another. Most importantly, beyond the statistical
utility of each model, we enumerated the trust assumptions behind each framework. As we saw with
ESA, differential privacy is always embedded into larger systems. Thus, while this probabilistic
definition gives us a precise language to converse, debate, and budget privacy, the definition may
not always directly determine the specific implementation in practice. When is it reasonable to have
a trusted shuffler instead of a trusted central curator? Can we trust “trusted hardware”? When
are streaming algorithms appropriate? By answering such questions, we may be able to balance
statistical utility and trust assumptions as we build differential privacy systems in practice.

8 Code

While tucked away in a footnote on the previous pages, we note that the uniformity testing code
can be found at https://github.com/jonathanhuml/cs208_final_project
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