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1 Problem Statement

Increases in computational power, floods of cheap sensors or data extraction
methods, and sophisticated modeling has launched the era of machine and deep
learning. When we find typical measures of model success inadequate, the an-
swer has been clear: more parameters, more data, better engineering. This feed-
back loop has made highly overparameterized networks too high-performing to
ignore, and such models now have relevance across nearly all disciplines, ranging
from medicine to law, where the decisions can be a matter of life or death. We
are then faced with a dilemma: drown in a sea of data and continue to make
decisions based on heuristics and hunches or incorporate these models into our
workflows.

Of course, these high-performing black boxes come at a price. A major
obstacle to the widespread use of such models is their lack of transparency. Users
of such models, such as doctors, should hesitate to adopt a model’s conclusions
if the basis of the decision is not clear, or else risk making judgements based on
mere happenstance. This has given rise to the field of explainable AI (XAI), an
attempt to provide human-interpretable descriptions of relevant features upon
which a model makes a classification. Challenges of XAI include makings its
explanations robust, exhaustive, and faithful to the actual workings of the model
it is trying to explain. The paper we have chosen for this project [2] contributes
to this field of XAI by expanding on LIME (Local Interpretable Model-Agnostic
Explanation) [7] through the addition of a Bayesian framework.

2 Context and Scope

The classical field of statistics has made great contributions to scientific studies
in the past century, not only in the hard sciences, but in public policy, law, or
the practice of medicine. The workflow here, though not necessarily simple, is
at least straightforward: modelers make a hypothesis, gather data, and reject or
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fail to reject said hypothesis based on the theoretical guarantees of the hypoth-
esis testing method. Modern deep and machine learning, in contrast, presents
new paradigm shifts: first, where the modeler may or may not have a specific
hypothesis, which we term the exploratory regime. In the second paradigm
shift, the space of hypotheses is too large to possibly explore, which we term
the machine domain. As an example, platforms like Youtube and Facebook live
in the machine domain. Content flow is too large for any number of humans
to sort in a reasonable amount of lifetimes, and thus curation is left to deep
and machine learning algorithms. Similarly, one of the miracles of the late 20th
and early 21st century is the Human Genome project, where the feature space
across all humans will be even more complex. Of course, we disregard the util-
ity of such data at our own risk, yet we must also balance the influx of data
with the inherent capacity of our modeling techniques. We will have to model
the data if we wish to make use of it, which necessarily entails some degree of
compression. We compress thousands of pixels to binary labels, or thousands
or millions of numbers to single regression parameters, with methods of varying
complexity. The former, for example, often necessitates millions or billions of
parameters, while the latter has a closed, analytical form known since the time
of Gauss and Laplace. When we sacrifice decision-making in the machine do-
main, what information do we lose, how much error or noise is acceptable, and
in what human domains? Perhaps there is a middle ground, where machines
can do the heavy lifting, as they eventually must, but with possibility of human
intervention. This is where XAI enters the scope of our view.

3 Existing work

A host of explainable AI methods exist. We segment such approaches into
two broad categories: global and local explanations. A global explanation de-
scribes how a given model makes decisions overall, while a local explanation
describes how a model makes decisions for a given instance of data. Among
the most popular of the latter methods is Local Interpretable Model-Agnostic
Explanation (LIME), which draws inspiration from surrogate models in classical
engineering, where model evaluation is a computationally expensive bottleneck
and proxy methods may perform suitably well.

In LIME, though the model evaluation is still often the computational “bot-
tleneck” (or rather, computationally dominant operation), the proxy method
can be used to map sensitivities from a black-box model to a white-box model.
Such a framework has been used in other domains with great success. In [10],
for example, the authors fit a regularized linear regression model from network
activations across various architectures to map ANN responses to neural re-
sponses in the macaque ventral visual pathway, which shows high degrees of
predictivity between artificial neurons and real neurons. Similarly, we may map
the outcomes of black-box models to features in the input space, and test the
predictivity of these features in the model’s decision.
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LIME is not so much a specific model as it is a general approach for ex-
tracting interpretable coefficients in much lower dimensional subspace than the
actual parameter space of the black-box model. This move from parameter to
feature space is analogous to probing a human’s decisions by weighting their
verbalized relevant factors in, say, what they chose for dinner, as opposed to
looking at the activation of each individual neuron and synaptic connection in
their brain. The class of interpretable models is wide, ranging from classical
regression models to decision trees, and the class of intepreted models is pur-
ported to be without bound, at least in the original paper. Thus LIME is model
agnostic. As we explore later on, we should indeed care about the model out-
puts, as it will determine the interpretation of model coefficients. The overall
LIME workflow can be succinctly summarized as follows:

1) Choose the locality: Select an instance of data x for which we want an
explanation.

2) Augmentation: Perturb x with noise to obtain N samples xi = x + εi
for i ∈ {1, . . . , N}. In the case of LIME, the noise is Gaussian standard normal
with εi ∼ N (0, 1). Feed into the black-box model f to obtain outputs yεi .

3) Measure the locality: Weigh the new samples according to proximity to
instance of interest with distance d(x, xi). In the case of LIME, the metric of
choice is the exponential smoothing kernel. The authors denote this proximity
by πx.

4) Modeling step: Train a weighted interpretable model g, such as regression
or a decision tree on yεi as a function of xi.

5) Readout step: Explain the prediction by interpreting the local model. In
the case of regression, we interpret the the regression coefficients as the sensi-
tivity of the perturbed explanation to the feature of interest.

We note that in step (4), the feature space is desirably low. The authors
denote the overall problem, for loss function L as:

ming∈G L(f, g, πx) + Ω(g) (1)

Thus we desire Ω(g) to be low. In such an instance, we might perhaps choose
ℓ1 here, which is known to promote sparsity in the coefficients.

4 Contribution

Several known problems exist with LIME. At the forefront is the notion of
distance that LIME uses to obtain the weights for the model g, or the width of
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the exponential smoothing kernel in this particular proposal given as:

πx = exp

(
−||xi − x||22

σ

)
The interpretable coefficients are highly sensitive to the hyperparameter σ,

often changing the magnitude and even overall direction of a given feature,
which reduces our confidence in the explanation. If σ is too large, then the
simple model g attempts to fit the global complexity of f , a decidedly hope-
less task. If σ is too small, this approximates fitting a constant function to
the perturbations, in which case we learn nothing useful for interpretation. At
a computational and implementation level, incredibly small weights are also
numerically unstable in the under/overflow sense. Furthermore, no theoretical
guarantees exist for choice of σ, which is largely a post-hoc process of tuning. In
this sense, choice of σ is prone to possible unintentional or biased manipulation
for desired results, which prevents the precise use case of LIME. This is not
necessarily specific to the exponential smoothing kernel. The choice of distance
is itself an arbitrary choice.

BayLIME specifically addresses this issue by augmenting the weighted re-
gression with a Bayesian step. Bayesian philosophy is itself a form of regu-
larization through the choice of prior. In BayLIME, we augment our mean
and covariance matrices in the posterior of the local surrogate model. Thus,
we obtain a distribution of surrogate regression coefficients, which allows us to
quantify uncertainty with respect to a given feature’s importance. The paper
attempts to show that:

1) Adding priors improves consistency of explanation.

2) Adding priors makes the classifiers more robust to kernel settings.

3) Combining LIME with other XAI methods leads to better fidelity.

5 Technical content (high level)

The Bayesian update is entirely governed by the precision in the likelihood (α)
the prior covariance (λ), each of which are scalars. Thus the Bayesian update
consists of two cases: the uninformative prior (both precisions α and λ unknown,
zero mean vector for the prior), and the partial informative prior (either of α
or λ known, known mean vector for prior). The high-level idea is that larger
λ
α , termed the regularization coefficient, will more heavily penalize the training
data fit and wash out the effects of the choice of kernel type and width.
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6 Technical content (details)

6.1 Implementing LIME

Preparing samples of perturbed images

We will consider a case where we want an explanation as to why the original
image x0 was classified as the class C0. To prepare a perturbed image xi, we
randomly turned each segment off with p = 0.5. We then used this perturbed
image xi as an input to the original classifier to obtain the output yi, which is
the probability that this perturbed image xi is classified as C0. We repeat this
process n times to obtain a set of perturbed samples X = {x1, . . . ,xn} and the
corresponding outputs y = [y1, . . . , yn]

T .

Calculating weights using a kernel function

We then measure the distance di between each perturbed image xi and the
original image x0 using cosine similarity distance. This distance was converted
to weights via a kernel function with an exponentiated quadratic form.

wi = exp

(
−||xi − x0||2

σ2

)
The collection of weights wi were summarized as a diagonal matrix W ∈ Rn×n

whose entries are the weights themselves, or:

W = diag(w1, . . . , wn)

Performing weighted ridge regression

Given a design matrix X ∈ Rn×m and a target output y ∈ Rn, the original
LIME performs ridge regression by weighing each sample by W

β = (XTWX+ rI)−1XTWy

where r is the regularization parameter for the ridge regression.

6.2 Implementing BayLIME

6.2.1 Weighted Bayesian Regression

In the Bayesian update of LIME, we obtain a distribution over the regression co-
efficients, which we denote as β. The authors choose normal likelihood functions
with conjugate normal priors. Thus, the posterior is itself a normal distribu-
tion. The prior precision is represented by the parameter λ, and the likelihood
precision parameter is represented by the parameter α. The parameter λ en-
tirely determines the precision in the prior covariance, where S0 = λ−1Im with
Im ∈ Rm×m (m denoting the number of features). The mean prior vector µ0
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may be specified by the modeler in the cases of partial and full informative
priors, or set to zero in the uninformative case.

Calculating the posterior distribution in closed-form

The posterior distribution is given by:

Pr (β|y,X, α, ) ∝ Pr(y|β,X, α)Pr(β|µ0, S0)

= N (β|µn, Sn)

with

µn = Sn

(
S0

−1µ0 + αXTWy
)

Sn
−1 = S0

−1 + αXTWX

Estimating α and λ using empirical Bayes

When precision parameters α, and λ are not provided in the prior, we estimated
them from the data using empirical Bayes. We implemented an algorithm for
evidence approximation described in Section 3.5 of [5]. This is done by maxi-
mizing the marginal log likelihood with respect to α, λ and iteratively updating
the parameters.

7 Experiments

7.1 A Pedagogical Example

To motivate our approach, we first show an example on the MNIST-10 dataset.
We fit a simple neural network for multiclass classification. To isolate the effects
of the segmentation process, we first show an experiment on LIME that varies
the segmentation algorithms. We then sought to explain the predictions via
BayLIME and bootstrapped LIME with t = 100 iterations.

While the approach is fairly straightforward at a high level, we noticed
marked differences in explanations depending on the segmentation process. This
process is specific to neither LIME nor BayLIME, and is left to be specified by
the user. In the segmentation process, there are various numbers of hyperpa-
rameters to tune depending on the algorithm, which determine the number and
size of segments or superpixels in the image. As described earlier, these su-
perpixels are randomly switched on and off. The challenge for a small-image,
low-resolution dataset like MNIST is that the number of segments is not always
clear: too many, and we may be fitting pixels themselves; too few, and our
superpixels cannot balance the background and written digit separation. Thus,
there is a high degree of ambiguity in this particular case. We noticed that
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the Quickshift segmentation algorithm, regardless of parameter tuning, obtains
sometimes meaningless or unclear segmentations, which leads to poor expla-
nations. In contrast, the Felzenszwalb segmentation algorithm obtains more
comprehensible superpixels, which much improves the explanations across most
classes of digits. We show this below:
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We also tested BayLIME versus bootstrapped LIME. In this case, as we
explore further in §7.2, we had uninformative priors, learning λ and α from the
data. As we can see below, the differences are slight in the predictions. We find,
in agreement with the BayLIME paper, that uninformative priors and LIME
are of mostly the same consistency.
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7.2 Probing BayLIME: A Case of Uninformative Priors

Adding priors should increase robustness to kernel settings and improve consis-
tency in explanations. We tested this hypothesis by using various kernel widths
in the exponential kernel using the California Housing dataset to predict home
prices. First, we trained a simple, densely connected ANN. Because this dataset
is fairly linear and homoscedastic, we should roughly “recover” the weights via
BayLIME had we simply ran least squares instead of the network. For 6 kernel
widths of varying sizes, we ran 100 trials of our BayLIME implementation in the
case of uninformative priors, where µ0 = 0⃗ and α and λ are unknown, which
gave a distribution N ∼ (µn, Sn) of regression coefficients. Since we know
the closed form of these distributions, it was simple to calculate the pairwise,
forward Kullback-Liebler divergence between all trials. We note that for some
iterations, Empirical Bayes did not converge for α, λ, in which case we simply
discarded the trial since this constituted only a handful of cases. We note that
for kernel widths smaller than a certain threshold (about σ ≈ 2 in this case),
we get highly unstable precisions, which we do not report here.

For the KL-divergences, we expect the distribution to be centered at 0, since
perfect consistency would indicate that all distributions are equal. As can be
seen below, we do not exactly observe this:
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The divergences are mostly centered above 0. Certainly for larger kernel
widths, we should expect less consistency as we approximate a global scale.
However, in this one example, and indeed throughout our other examples, we
found that the non-informative case was not necessarily more consistent or ro-
bust than regular LIME. This figure represents a different method of obtaining
the same information as Fig. (2) of the BayLIME paper, where the authors
instead used Kendall’s W to measure consistency. Here, we have illustrated a
potential failure mode of BayLIME: we cannot hope to add any prior and hope
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to observe greater consistency. Instead, we must obtain meaningful priors. As
we explore below, this is decidely less simple of a task.

7.3 Successes of BayLIME

7.3.1 Obtaining Partial Informative Priors via GradCAM

In light of the findings on the uninformative case, namely that LIME and
BayLIME differ little in their consistency and robustness to kernel settings,
we attempted the informative case outlined in the paper to obtain priors via
GradCAM. In our implementation, we applied GradCAM to the first convo-
lutional layer, in contrast to how GradCAM is normally applied to the last
convolutional layer due to the small sizes and low-resolution of the MNIST-10
data. The GradCAM explanation alone gives the following result, for example:

By using the prior, we obtained more visually consistent results. For exam-
ple:

7.3.2 Using BayLIME against backdoor attack

A common problem associated with evaluating XAI is that people often rely on
visual inspection of the results to assess whether the explanations makes sense.
For example, if you use an XAI method to probe why a particular image was
classified as a dog, and the XAI method gives back a region of the dog’s face an
explanation, it is tempting to consider this a success. However, this approach is
prone to human bias. Here, we tried to overcome this limitation by using a data
set that contains a ground truth, and testing whether BayLIME can recover
that ground truth, an approach described in the original BayLIME paper [2],
as well as few other recent works [8, 9].
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To generate a data set with a ground truth, we first trained a standard deep
convolutional neural network model that encountered a backdoor attack using
the BadNet strategy [1]. More specifically, we manipulated the MNIST training
set by taking a random 1/3 of the images corresponding ”1”, and adding a single
white pixel in the lower right corner (”backdoor trigger”). For these images with
a superimposed backdoor trigger, we also modified the output from ”1” to ”0”
(Figure 1). In this case, the purpose of the attack is to train a model such that
whenever the we add a backdoor trigger to the image, the model ignores the
digit and just outputs ”0”, the targeted output.

Figure 1: ’Poisoned’ training data set for MNIST used for the BadNet exper-
iment. In 1/3 of the digits ’1’, a single white pixel was added to the bottom
right of the image (’backdoor trigger’). In these images with the trigger, the
output was also manipulated so that the label is ’0’. None of the other digits
were altered.

We verified that the BadNet strategy led to a successful backdoor attack.
After finishing the training with training accuracy ¿97%, we tested the perfor-
mance on the unmanipulated test set, and the test accuracy was over ¿97%.
However, when we added a single white pixel at the specific location of the im-
age (bottom right corner), the accuracy drastically dropped to 16%, and most
of the model output was ”0” (Figures 2 and 3). Thus, this demonstrates that by
manipulating a small fraction of the training data ( 3% as the manipulation was
only done on 1/3 of the ”1” and none of the other digits), we can take control
over the output of the neural network model.
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Figure 2: Test results of the BadNet. Top: model output when normal test
data set it used. Bottom: model output when a single-pixel backdoor trigger
is added. Now, the model outputs ’0’ for most of the digits, demonstrating a
successful attack.

Figure 3: Summary of the model performance. Classification accuracy is over
97% when tested on training set or test set, but as soon as I add a single-pixel
backdoor trigger, the accuracy goes down to 16%.

The user of this infected model might be puzzled as to why the model out-
putted ”0” in the case where the digit was obviously something else, even though
the accuracy of the model of unmanipualted test data is very high (Figure 3).
Thus, the goal of this experiment is to use BayLIME on images that contain
the backdoor trigger, which led the model to output ”0”, and test if BayLIME
can correctly recover the backdoor trigger, pointing to the user that it’s not the
image of the digit that was used for classification, but instead it was a single
pixel trigger at the bottom right of the image that was important for the output.

To carry out this experiment, we prepared three different priors:

• prior zero: non-informative prior that is zero everywhere

• prior ’in’: a prior that focuses on the center part of the image.

• prior ’out’: a prior that focuses on the peripheral part of the image.

Prior ’in’ was created by taking an average image across all digits in the
training data set, and thresholding the result to create a binary mask that
covers the center part of the image. Prior ’out’ was created by flipping the
True/False of the binary mask for prior ’in’. To obtain a valid prior for a given
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image instance, we segmented the image (using watershed), and then for each
segment, determined what fraction of that segment overlapped with the binary
mask (an example can be seen in Figures 4). Prior ’in’ might be used if the
user wants to focus on where the most of the digits are located in this data set.
Prior ’out’ might be used if the user feels that there is something other than the
digit that is being used by the model.

We then quantified whether the posterior given by the BayLIME returns the
segment that contains the backdoor trigger as the top explanation (i.e. segment
that has the largest feature importance). When the number of perturbation
was small, posterior when using prior zero was able to pick out the bottom
right segment that contains the backdoor trigger as the top explanation. As
expected, posterior when using prior ’in’ was focused on the center part and
failed to pick up the backdoor trigger. Interestingly, the posterior when using
prior ’out’ did indeed focus on the periphery, but was not able to pick up the
bottom right corner (Figure 4). As the number of perturbation increased, the
differences in prior became less pronounced and results using all three priors
picked out the bottom right segment as the top explanation (Figure 5).

This tendency held up when we tested on 100 images while varying the
number of perturbations. Prior zero was able to identify the backdoor trigger
with fewest numbers of perturbation, closely followed by a prior ’out’. Prior
’in’ lagged behind and required more perturbations to correctly recover the
trigger. This results emphasizes the importance of specifying the right prior.
In this particular experiment, it turns out that having a non-informative prior
with zero everywhere was able to pickup the correlation between the presence
and the absence of the trigger and the model output. We predicted the prior
’out’ would perform even better by able to ’focus’ on the regions outside the
digits, but other segments in the periphery had high feature importance, and
the bottom right segment did not stand out when the number of perturbation
was small. As expected, when we used the prior ’in’ that focuses on the center
part, it took more number of perturbations to overcome this initial bias.
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Figure 4: Mean of the prior
(µ0) and the posterior (µn) af-
ter n = 8 perturbed samples.
Top: prior zero, middle: prior
’in’, bottom: prior ’out’. No-
tice that the trigger comes up as
the top feature when using prior
zero.

Figure 5: Mean of the prior
(µ0) and the posterior (µn) after
n = 30 perturbed samples. Top:
prior ’zero’, middle: prior ’in’,
bottom: prior ’out’. Regardless
of the prior, BayLIME was able
to identify the backdoor trigger
on the bottom right.

15



Figure 6: Percentages of images in which the backdoor trigger was successfully
recovered (n = 100 images), as a function of number of perturbations. When the
number of perturbation is large, BayLIME can recover the trigger. The prior
that focuses on the center of the image (prior ’in’) requires more perturbations
to recover the trigger. Prior zero performs slightly better than prior ’out’.

8 Evaluation (your opinion)

8.1 LIME vs BayLIME

In summary, we found BayLIME to be a useful but sometimes limited augmen-
tation to the original LIME framework. We provide specifics below, but the
differentiation between the two methods is negligible in the case of uninforma-
tive priors, and there remains much work to do in obtaining useful, meaningful
priors.

8.2 Empirical Bayes

An additional purported benefit of a Bayesian update is the implicit regular-
ization provided by λ, α. However, in the Empirical Bayes algorithm we im-
plemented, the updates in each parameter are dependent upon µn, which as
we showed earlier, is a function of W . Thus, there is still dependency on the
weights in the case that λ, α are unknown. In practice, we found this estimation
step to be numerically unstable, and highly dependent upon the initialization
points of λ and α, as well as the kernel width. In the case of ill-tuned kernel
widths, we did not observe convergence in the algorithm as λ, α → ∞. We are
therefore not directly able to sidestep the problem of defining a neighborhood
with the precision parameters alone. Furthermore, for sufficiently large λ

α , at
what point have we penalized too much, and essentially reverted to the constant
function (small neighborhood) case we highlighted when attempting to tune the
kernel width?
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As the BayLIME paper itself states, there is essentially no performance differ-
ence in the uninformative prior case as the original LIME. As such, unless we
are sure to have a “good prior,” the use case for BayLIME is rather limited, and
we should likely opt for its more simple predecessor or else risk an extra mode
of failure with little marginal benefit.

8.3 Obtaining Priors

LIME is straightforward. BayLIME is straightforward. However, the actual
process of obtaining priors for BayLIME, which is its only differentiating factor,
is not always so clear cut. Much work remains in finding meaningful priors: we
found this section relegated to the Discussion and Appendix of the paper. At the
risk of delving in philosophy, what defines a meaningful prior, and what defines
a successful explanation? In both the informative and uninformative case, we
fitted or found λ and α from either standard Bayesian methods or GradCAM.
To what extent are these priors magic numbers meant for performance hack-
ing rather than the original intent of the method, which was to have a human
interpretable results? What does it mean for the GradCAM InceptionV3 net-
work to have λ = 54.8? Does this pertain to the image resolution, positioning,
training process, etc.? We risk making BayLIME a black box itself with more
complicated methods of obtaining priors.

Much of the analysis in BayLIME and our critical response has focused on
consistency. Priors do seem to make explanations more consistent in the case
of informative priors. However, if we are more consistent, are we consistently
correct or incorrect? No clear definition exists to be able to answer this question
at the moment. Per the BadNets example, we also see that bad priors can
hamper performance, and this was on the MNIST example where we had an
idea of how to simply obtain a prior. Even if we had obtained a prior that
seemed to improve explanations at more than a heuristic level, how could we
measure the generalization error of the prior (or rather, the process of obtaining
such a prior)? This is one downside of the local approach, as we do not obtain a
clear picture of the entire dataset, and how the process varies as a whole. “Prior
hacking” is thus a major back door that could bar this method from being used
in a practical setting.

8.4 Sensitivity to image segmentation

Before running LIME or BayLIME on an image instance, the user needs to
segment the images, as these segments are the fundamental units of perturbation
(i.e. we randomly switch each segment on or off to create a perturbed data sets).
We have noticed that this step requires careful experimentation as the size of
the segment is very important for explanations. We don’t want the segments
to be too large (e.g. an entire digit for the MNIST data) as this does not
address the user’s question about which part of the image was important for
the classifier output. On the other hand, we don’t want the segments to be too
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small (e.g. a few pixels) as it might be difficult to obtained good perturbed
samples as turning tiny segments on and off might not significantly change the
output of the classifier. While this is an important practical issue when running
LIME or BayLIME, these methods do not offer guidance as to how to perform
the segmentation, and the user will need to carefully experiment with this step.
Note that XAI methods that are based on gradients (e.g. GradCAM[6]) does
not have this problem.

9 Future work

This paper used conjugate-priors so that the posterior distribution can be writ-
ten down in closed-form. We can extend this work by using non-Gaussian priors
(e.g. using Laplace-like priors to perform Bayesian LASSO as in [4]) although
this would come at a larger computational cost. We also note that failure modes
in this case would be a greater risk despite the ability to model more complex
relationships.

All of the experiments here used weighted and regularized least squares for
the explainable models. Future work could evaluate a larger class of models
such as decision trees. While least squares does seem to solve a class of prob-
lems as verified in this analysis, we hypothesize that classical regression may
itself be a source of instability for any augmentation of LIME, Bayesian or not.
By definition, the model we have fitted on the standardized, centered data is
regressed on pure noise drawn from a standard normal distribution. Depending
on the data itself, we can introduce arbitrary instability. For example, image
segmentation data is a binary regression: is a segment on or off? Below, we
illustrate a slice of a 5 dimensional plane (representing 5 segments) fit through
least squares. We then flip one pixel off, completely shifting the trend of the
line.

(a) (b)
When the domain of least squares inputs are restricted, the algorithm becomes

much more sensitive to even the slightest perturbations

We hypothesize that the numerical scale of the binary restriction makes the
use of linear regression less useful in this case: we cannot simply read off the
weights as decision sensitivity to that superpixel because the weights will nec-
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essarily be biased depending on the location of the superpixel. This location
is not even necessarily content specific to that image. While the philosophical
approach of LIME is sound, it may be quite difficult to build off in a scalable
way without addressing this issue.

Another future direction would be to extend other XAI methods using
Bayesian methods. For example, recent work extended SHAP by incorporating
Bayesian framework [3].

10 Broader Impact

XAI methods have enormous potential to lift the veil from increasingly complex
black boxes. However, in this specific context, we find that LIME and BayLIME
have many potential negative impacts if released into the wild as is. We found
that kernel instability was not improved upon the case of uninformative priors.
Even in the case of informative priors, we noted a potential back door via “prior
hacking,” which could be used to gain a desired explanation as opposed to a
more generalizable approach that is faithful to the inner workings of BayLIME.
The prior hacker could obtain “reasonable” results as they see it, thus verify-
ing their model and standing behind the “increased fidelity” of a more robust
method. Because this is a local approach that is (in theory) observable by hu-
mans as in the case of images, prior hacking is much more valid of a concern
than of high-dimensional datasets with many millions of datapoints: the human
user has a clear idea of what should or should not explain that particular in-
stance. In this case, there could be any number of users. For example, doctors
could use these methods on medical imaging data.

In a more negative example, a credit service could use gender as a basis
for denying loans, either accidentally or purposefully (in the BayLIME paper,
for example, the authors include race in the Boston housing dataset, so we
don’t find this a far-reaching hypothetical). Depending on their prior beliefs–
perhaps an internal consultation–such a credit service could quite easily convince
themselves or regulators that they are not making decisions on such a basis. In
addition, with the right kernel tuning, the results could be unstable enough to
become inconclusive, and responsibility could be plausibly denied. In light of
these potential failure modes, there exist many obstacles to overcome before
methods like LIME or BayLIME are serviced in mission-critical scenarios.
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