
Ising Models: Numerical Simulations and Physical
Applications

David Dye, Jon Huml, Harsha Tanneru

Introduction

Ising models [9] are idealized mathematical models of particles with binary spins. While
this paper will focus on their use in equilibrium statistical mechanics, the models have
numerous applications in physics, engineering, or neuroscience [6]. A central object in
statistical mechanics is the partition function, or normalizing constant in a probability sense.
Enumerating all possible states and transitions for this partition function, however, is a
combinatorial problem and therefore must be approximated statistically and numerically
for all but the smallest systems of particles. Furthermore, properties of the Boltzmann
distribution dictate that most of the values in the partition function are zero or close to zero,
and so a conventional numerical integration effort would be wasteful, even if possible [1].

The main goal of this paper will be to overcome these obstacles in simulating Ising
systems efficiently and accurately with Markov Chain Monte Carlo methods. We verify
our simulations with analytical solutions in certain cases where such solutions exist. The
first third of the paper focuses on the prime method of simulation in the Ising literature:
the Metropolis-Hastings algorithm [5]. Developed during the Manhattan Project in the
1940s, the algorithm remains one of the most well-known Monte Carlo methods in physics.
Of course, such an old method is bound to lack some desired computational properties.
For this, we evaluate more recent cluster lattice algorithms [7] like Swendsen–Wang [11]
or the Wolff method [13] in the second third of the paper. In contrast to the single-spin
flip approach of Metropolis-Hastings, these methods assign bonds between every pair of
nearest neighbors and flip clusters of spins. The last third of the paper shows how Ising
simulations are not merely for their own sake, but can be used in other physical tasks like
numerical quantum path integration on a lattice [8]. Our paper should prepare the reader
to implement Monte Carlo methods in statistical mechanics and apply the simulations to
various physical problems.

Methods and Results

Background and Overview

The Ising model is a mathematical model of ferromagnetism in statistical mechanics. It
was proposed by Wilhelm Lenz in 1920 and solved exactly by Ernst Ising in 1925. In the
Ising model, each site on a lattice (a regular arrangement of points in space) is occupied by
a ”spin,” which can take on one of two values, usually represented by +1 and -1. These
spins interact with each other through a simple pairwise interaction, in which adjacent

1



spins tend to align with each other. The strength of this interaction is represented by a
parameter called the coupling constant.

The Ising model can be used to study the behavior of ferromagnetic materials, in which
the spins of the electrons align in the same direction, leading to a net magnetization. It can
also be used to study phase transitions, such as the transition from a disordered state to an
ordered state as the temperature is lowered. The Ising model has been widely studied and
has many applications in fields such as statistical physics, condensed matter physics, and
computer science.

Mathematical formulation and Analytical Solution

We look at Ising models in 2-D and 3-D lattices and study how the properties - energy,
magnetisation, and heat capacity - vary with temperature. The following notation is used
to define equations in the upcoming sections.

si is the spin at site i in a 1-D lattice
si,j is the spin at site (i, j) in a 2-D lattice
si,j,k is the spin at site (i, j, k) in a 3-D lattice
αj is a state of the lattice i.e; (s0, s1, s2, . . . , sn)
J is the exchange coupling constant
kB is the Boltzmann constant
T is the temperature
N is the number of spins along one axis of the lattice (a 10× 10 lattice has N = 10)
Z(T) is the partition function
P(α) is the probability mass function of the system being in state α
M(H, T) is the mean magentisation of the lattice
m is the magentisation of the lattice at current state
H is the Hamiltonian, or total energy, of the system.
E is used interchangeably with H to denote energy.

1-D Ising Model

The energy of the one-dimensional Ising model with no external magnetic field at state αj
is determined by the Hamiltonian as:

H(αj) = −J∑
i,j

sisj

And the probability of the system being in state αj is given by P(αj):

P(αj) =
e
−

E(αj)
kBT

Z(T)

2



The partition function, which is the fundamental quantity in statistical mechanics, is
obtained by summation over all possible states. It can be written as:

Z(T) =∑
αs

e
−

E(αs)
kBT

From [1], the magnetisation M(H, T) is given by:

M(H, T) =
eksin(βH)

(e2ksin2(βH)+ e−2k)1/2

M(H, T) is an analytical function for for real H and positive T. It is worth noting that the
one-dimensional Ising model does not exhibit a phase transition at positive temperatures,
unlike the two-dimensional and three-dimensional versions of the model.

2-D Ising Model

Synonymous functions are defined for the 2-D and 3-D cases. The 2-D Hamiltonian with
no external magnetic field is:

H = −J
2
⎛
⎝∑i,j

si,jsi+1,j +∑
i,j

si,jsi,j+1
⎞
⎠

The 2-D partition function is:

Z(T) =∑
s

e
−

H
kT

The total lattice magnetization for a given state is:

m =∑
i,j

si,j

And the mean lattice magnetization for a given state is:

M = 1
N2∑

i,j
si,j

3-D Ising Model

Similarly to the 2-D case, the 3-D functions are as follows. The Hamiltonian in three
dimensions is:

H = − J
2
∑
i,j,k
(si+1,j,k + si−1,j,k + si,j+1,k + si,j−1,k + si,j,k+1 + si,j,k−1)

3



The partition function is:

Z(T) =∑
s

e
−

H
kT

The total magnetization is:
m = ∑

i,j,k
si,j,k

And the mean magnetization of a lattice state is:

m = 1
N3 ∑

i,j,k
si,j,k

Numerical Solution

Solving the Ising model can be challenging because the number of possible states scales
exponentially with the number of lattice sites (the number of states in an p-dimensional
lattice with n sites along each dimension is (2p)n). Numerically computing the exact
expectation of energy and magnetisation involves iterating over all possible states, and
therefore is not feasible at high values of n and p.

One approach to solving the Ising model is through the use of Monte Carlo simulations.
Monte Carlo methods are a class of computational algorithms that use random sampling
to obtain numerical results. Monte Carlo methods leverage the law of large numbers
to compute integrals described by the expected value of some random variable as the
empirical mean of independent samples of the variable. The algorithm is relatively simple
to implement and can be easily parallelized, making it an efficient tool for studying
complex systems.

When the probability distribution of the variable is parameterized (state αj is the
parameter in our case), a class of Monte Carlo methods called Markov chain Monte Carlo
(MCMC) methods are used. Unlike Monte Carlo sampling methods that are able to draw
independent samples from the distribution, Markov Chain Monte Carlo methods draw
samples where the next sample is dependent on the existing sample, called a Markov
Chain. That is, as the Markov chain evolves, the samples being generated by the MCMC
method will converge to an equilibrium (stationary) distribution. Thus, samples drawn
from the Markov chain after many iterations will be approximately equal to samples
drawn from the desired target distribution.

In an MCMC simulation of the Ising model, random configurations of the spins in the
system are generated and the energy of each configuration is calculated using the Ising
model’s exponential function. The probability of a particular configuration being observed
can then be estimated using statistical techniques, and the properties of the system, such
as its magnetization and susceptibility, can be calculated using empirical mean. We will
now discuss the Metropolis-Hastings and Gibbs Sampling MCMC methods in detail.

4



MCMC Method: Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [10] is as follows:

1. Create a proposal distribution V(αk+1∣αk) to generate the next sample αk+1 given the
current sample αk.

2. Compute un-normalized probabilities of each state. Note that we are only interested
in the ratio of probabilities, so it is not necessary to compute the partition function.
The acceptance ratio for moving from state αk to αk+1 is:

r = P(αk+1)
P(αk)

=

exp(−E(αk+1)
kBT

)

Z(T)

exp(−E(αk+1)
kBT

)

Z(T)

= exp(− ∆E
kBT
)

The pseudo code for Metropolis-Hastings [1] MCMC sampling algorithm is given below.

1. Start with an arbitrary spin configuration αk = {s1, s2, s3, . . . , sn}

2. Generate a proposal configuration αprop by:
a. Choosing a particle (i, j) (or (i, j, k) for 3-D) at random
b. Flipping its spin

3. Calculate the energy of the proposal configuration Eαprop

4. If Eαprop ≤ Eαk , accept the trial by setting αk+1 = αprop

5. If Eαprop > Eαk , accept with relative probability R = exp(− ∆E
kBT
)

a. Choose a uniform random number 0 ≤ r ≤ 1
b. Set αk+1 = αprop if R ≥ r (accept)
c. Set αk+1 = αk if R < r (reject).

6. Repeat until convergence.

MCMC Method: Gibbs Sampling Algorithm

Like Metropolis-Hastings, Gibbs sampling [4] is a variant of MCMC, but it is concep-
tually simpler. If we want to sample from a distribution over several random variables,
Gibbs sampling fixes all but one random variable, samples that one conditioned on the

5



others, and then repeats the process for each random variable. So, all we need are the
conditional distributions. Note that, the acceptance ratio computed with the conditional
distributions of site si,j is same as that with joint distribution αj.

The pseudo code for Gibbs MCMC sampling algorithm [10] is given below.

1. Start with an arbitrary spin configuration αk = {s1, s2, s3, . . . , sn}

2. For each site (i, j) (or (i, j, k) for 3-D lattice)

(a) Generate a proposal configuration αprop by flipping spin of particle (i, j) (or
(i, j, k) for 3-D lattice)

(b) If Eαprop ≤ Eαk , accept the trial by setting αk+1 = αprop

(c) If Eαprop > Eαk , accept with relative probability R = exp(− ∆E
kBT
)

i. Choose a uniform random number 0 ≤ r ≤ 1
ii. Set αk+1 = αprop if R ≥ r (accept)

iii. αk+1 = αk if R < r (reject).

3. Repeat until convergence

MCMC Simulation of 2-D Ising Model

Figure 1: Metropolis-Hastings. From left to right, lattices at iteration 0, t/3, 2t/3, and
t iterations timestamps of the Metropolis-Hastings algorithm (where t is the number of
iterations for convergence). Simulations carried out on a 50× 50 lattice of spins with J = 1
and T = 1.5. A blue cell represents a spin of +1 and a red cell represents a spin of −1.

6



Figure 2: Gibbs Sampling. From left to right, lattices at iteration 0, t/3, 2t/3, and t iterations
timestamps of the Gibbs sampler (where t is the number of iterations for convergence).
Simulations carried out on a 50 × 50 lattice of spins with J = 1 and T = 1.5. A blue cell
represents a spin of +1 and a red cell represents a spin of −1.

The energy of the system is minimized when the spins in the system are aligned. This
is because the interaction energy between spins in an Ising model is minimized when
the spins are aligned. This is consistent with the observed results from both Monte Carlo
simulations, where all the spins are aligned in the final converged state.

3.

Figure 3: Left: Metropolis-Hastings sampling. The average of the final energies of 5
2-D spin states simulated using Metropolis-Hastings sampling at N = 100 temperatures
ranging from 1 to 5. Right: The average of the magnitude of the final magnetizations of 5
2-D spin states simulated at N = 100 temperatures ranging from 1 to 5. Both plots consider
the average measurement per spin particle.

4.

7



Figure 4: Left: Gibbs sampling. The average of the final energies of 5 2-D spin states
simulated using Gibbs sampler at N = 100 temperatures ranging from 1 to 5. Right: The
average of the magnitude of the final magnetizations of 5 2-D spin states simulated at
N = 100 temperatures ranging from 1 to 5. Both plots consider the average measurement
per spin particle.

Magnetization is a measure of the overall alignment of the spins in the system. When
the spins are randomly oriented, the magnetization is zero. When the spins are all aligned
in the same direction, the magnetization is maximum. At high temperatures, the thermal
energy is large and the spins are more likely to be randomly oriented, leading to a lower
magnetization and higher energy. At low temperatures, the thermal energy is small and
the spins are more likely to be aligned, leading to a higher magnetization and lower energy.
We observer the same trends in empirical results from MCMC simulations.

MCMC Simulation of 3-D Ising Model

Figure 5: Metropolis-Hastings. From left to right, lattices at iteration 0, t/3, 2t/3, and
t iterations timestamps of the Metropolis-Hastings algorithm (where t is the number of
iterations for convergence). Simulations were carried out on a 7× 7× 7 lattice of spins with
J = 1 and T = 2. A blue cell represents a spin of +1 and a red cell represents a spin of −1.

8



Figure 6: Gibbs Sampling. From left to right, lattices at iteration 0, t/3, 2t/3, and t iterations
timestamps of the Gibbs sampler (where t is the number of iterations for convergence).
Simulations carried out on a 7 × 7 × 7 lattice of spins with J = 1 and T = 2. A blue cell
represents a spin of +1 and a red cell represents a spin of −1.

Just like the 2-D lattice, all spins are aligned at convergence in 3-D Ising model simulation.
7.

Figure 7: Left: Metropolis-Hastings sampling. The average of the final energies of 5 3-D
spin states simulated using Metropolis-Hastings sampling of a 8× 8× 8 lattice at N = 100
temperatures ranging from 1 to 1−. Right: The average of the magnitude of the final
magnetizations of 5 2-D spin states simulated at N = 100 temperatures ranging from 1 to
1−. Both plots consider the average measurement per spin particle.

8.

9



Figure 8: Left: Gibbs sampling. The average of the final energies of 5 3-D spin states
simulated using Metropolis-Hastings sampling of a 8× 8× 8 lattice at N = 100 temperatures
ranging from 1 to 1−. Right: The average of the magnitude of the final magnetizations
of 5 2-D spin states simulated at N = 100 temperatures ranging from 1 to 1−. Both plots
consider the average measurement per spin particle.

Critical Temperature

We fit a logistic curve on each magnetisation v/s temperature plot to find the critical
temperature Tc. More detail on this method is provided in the Swendsen-Wang section.
We observe that the critical temperature Tc is higher for 3-D Ising model compared to 2-D
Ising model.

Algorithm 2−D 3−D
Metropolis-Hastings 2.5667 4.3333

Gibbs Sampling 2.6176 4.3221

Table 1: Critical Temperature Tc(○C) for 2−D and 3−D lattices

MCMC Diagnostics: Acceptance rate

The acceptance rate is the fraction of proposed moves that are accepted in the sampling
process. Acceptance rate determines the efficiency of the sampling process. We notice that
both Metropolis-Hastings and Gibbs sampling have similar acceptance rates. Acceptance
rate increases with temperature. This is expected as the acceptance ratio R = exp− ∆E

kBT
increases with temperature. Physically, this means that fewer proposals for a spin flip are
rejected at higher temperatures.

9.

10



Figure 9: Left: Acceptance rate. The acceptance rate of 5 2-D spin lattices of shape 7× 7
simulated using Metropolis-Hastings and Gibbs sampler at N = 100 temperatures ranging
from 1 to 5. Right: The acceptance rate of 5 3-D spin lattices of shape 8× 8× 8 simulated
using Metropolis-Hastings and Gibbs sampler at N = 100 temperatures ranging from 1 to
10.

Alternative Update Methods: Swendsen-Wang Algorithm

The Metropolis-Hastings algorithm creates a Markov Chain which updates according
to probabilistic flips of each spin in the Ising lattice, and its convergence rate near critical
points (i.e. a phase transition) is very slow [11]. Therefore, alternative methods have been
developed to avoid the critical slowing-down effect. Two of these methods are essayed in
this paper, namely the Swendsen-Wang Algorithm and the Wolff Algorithm. Both methods
replace entire spin ”clusters” rather than individual spins, which greatly increases the
efficiency of evaluating large spin systems near the critical temperature.

Consider a 2- or 3-dimensional Ising model lattice of randomly arranged particles with
spins +1 or −1. A ”spin cluster” is a group of bonded, orthogonally-adjacent particles
with the same spin. A bond forms (event B) between identical-spin particles i and j with
probability P(B∣σi = σj) = 1 − exp(−2J/T). If i and j do not have the same spin, then the
probability that a bond forms between them is P(B∣σi ≠ σj) = 0.

The Swendsen-Wang Algorithm converges to the same stationary state as the Markov
chain given by the Metropolis-Hastings algorithm. The Swendsen-Wang Algorithm is as
follows [11]:

1. Form an initial spin state, where each spin is +1 or −1 with probability 1
2 .

2. Create a list of spin clusters within that state according to the bond probabilities
given above.

11



Figure 10: The first, third, fifth, and seventh iterations of the Swendsen-Wang Algorithm
for a 50× 50 lattice of spins with J = 1 and T = 1.5. A blue cell represents a spin of +1 and a
red cell represents a spin of −1.

3. Iterate over the list of spin clusters, and with probability 1
2 , flip the sign of every spin

within a cluster.

4. Using the resulting spin state from step 3 as the updated state, repeat steps 2 and 3
until a pre-specified number of iterations is reached.

Our method for finding all spin clusters was as follows:

1. Define empty lists named ”blacklist” and ”connections.”

2. Iterate over the locations of all spins in the spin state. If a spin is in the blacklist, skip
that spin. Otherwise, add a new empty list named ”cluster” to the connections list.
Add the location of the spin to both the blacklist and the cluster list.

3. To form the cluster, find all non-blacklisted spins that are adjacent and bonded to the
current spin. Add the locations of these spins to both the blacklist and the cluster list.
Then repeat this for every adjacent spin.

4. At the end of the iterations, the blacklist will contain the locations of all of the spins
(once each), and the connections list will contain all of the spin clusters.

This method is recursive, and is computationally expensive for large spin states. There
is no obvious way to make this process more efficient (such as saving bonded spins)
because bonds form randomly for every new spin state. However, numerical testing of the
algorithm shows that it is able to operate without reaching the maximum recursion depth
for up to a sixty by sixty lattice, which is large enough for our purposes.

An example of how an initial spin state evolves according to the Swendsen-Wang Algo-
rithm is given in Figure 10. A spin state that is almost entirely red or blue is magnetized
with low energy, and a spin state that has a random distribution of red and blue is not
magnetized with high energy. As can be seen from the figure, it took a total of seven itera-
tions for the Swendsen-Wang algorithm to converge to a magnetized state from the given
random initial state, which has a temperature reasonably close to the analytically-proven

12



Figure 11: Left: The average of the final energies of 10 2-D spin states simulated at N = 100
temperatures ranging from 1 to 5. Right: The average of the magnitude of the final
magnetizations of 10 2-D spin states simulated at N = 100 temperatures ranging from 1 to
5. Both plots consider the average measurement per spin particle.

critical temperature of 2.269. Because of how quickly the Swendsen-Wang Algorithm
converges, we took the maximum number of iterations to be 10 for all future plots.

An issue with the Swendsen-Wang Algorithm (and cluster algorithms generally) is
that its final state is highly dependent on the initial state. Therefore, some simulations
of low-temperature states may take longer to converge and will appear non-magnetic,
and some simulations of high-temperature states may begin in a magnetized state and
will appear magnetic. Therefore, it makes sense to take the average measurements from
many simulations of a given temperature. With this technique, we generated data points
representing the average absolute magnetizations and energies of final spin states from 10
repeated measurements for each of N = 100 uniformly-spaced temperature values between
1 and 5. These data points are plotted in Figure 11.

A natural continuation is to try and estimate the critical temperature Tc = 2.269 using
these datasets. To make the estimate, we minimized the root mean squared error (RMSE)
of the logistic function and the data set. Mathematically, we found L, k, xB, and a by
minimizing the sum:

min
L,k,xB,a

¿
ÁÁÀ N
∑
i=1
(yi −

L
1+ e−k(xi−xB)

− a)
2

(1)

Where xi is temperature i and yi is the corresponding data point at xi. We used
scipy.optimize.minimize to calculate the optimal L, k, xB, and a to fit the logistic func-
tion f :

f (x) = L
1+ e−k(x−xB)

+ a (2)

Overlays of these logistic functions are given in Figure 12.
The value of xB can be used to approximate the critical temperature at which a phase

13



Figure 12: Left: See Figure 11 for data interpretation. The overlaid logistic curves minimize
the RMSE between the curve and the data points.

transition occurs, since it is where the logistic approximation changes from concave to
convex. For the 2-D Swendsen-Wang algorithm, using the logistic curve approximating
simulated magnetization values, we obtain xB = 2.34. The relative error between this and
the exact analytical result is:

∣Tc − xB∣
Tc

= ∣2.269− 2.34∣
2.269

= 0.0313 = 3.13% (3)

So, the logistic approximation applied to data obtained using the 2-D Swendsen-Wang
Algorithm estimates the critical temperature for a phase transition with relative error 3.13%.
To be absolutely clear, the obtained value of xB varies between trials due to randomness
caused by cluster algorithms and the fact that only 10 repetitions were averaged over. The
reported values of xB for all cluster algorithms vary between simulations, but on the order
of 0.1.

Extrapolating the Swendsen-Wang Algorithm to 3-dimensions is straightforward, and
the only algorithmic difference involves considering neighbors along the z-axis when
forming spin clusters. Figure 13 gives an example of how an initial 3-D spin state evolves
according to the Swendsen-Wang Algorithm. We used matplotlib’s mpl toolkits.mplot3d
Axes3D to create these figures. The 3-D case can simulate up to a 15× 15× 15 spin lattice
with the algorithm described, after which the maximum recursion depth is reached.

Figures 14 and 15 were created following the exact same procedure as in the 2-D case,
and have the same interpretations. A noteworthy feature is that the average energy of
a particle in a magnetized state in 3 dimensions is −3, whereas in 2 dimensions it was
−2. This makes sense, since the number of neighbors with the same spin increased from
approximately four to approximately six when going from 2-D to 3-D.

As expected, we see that a higher temperature is required to induce a phase transition
from a magnetized state to a non-magnetized state in the 3-D case versus the 2-D case.

The logistic regression to the magnetization curve produces an xB value of xB = 4.27.
There is no analytical solution for the 3-D case of the Ising model, but numerical simulations

14



Figure 13: The first, second, third, and fourth states of the Swendsen-Wang Algorithm for
a 5× 5× 5 lattice of spins with J = 1 and T = 3. A blue dot represents a spin of +1 and a red
dot represents a spin of −1.

Figure 14: Left: The average of the final energies of 10 3-D spin states simulated at N = 100
temperatures ranging from 1 to 10. Right: The average of the magnitude of the final
magnetizations of 10 3-D spin states simulated at N = 100 temperatures ranging from 1 to
10. Both plots consider the average measurement per spin particle.

15



Figure 15: Left: See Figure 14 for data interpretation. The overlaid logistic curves minimize
the RMSE between the curve and the data points.

by other sources estimate the critical temperature as Tc = 4.51 [3]. Therefore, the relative
error using a logistic approximation on simulations with the Swendsen-Wang Algorithm
for the 3-D Ising model is:

∣Tc − xB∣
Tc

= ∣4.51− 4.27∣
4.51

= 0.0532 = 5.32% (4)

Because the relative error is low for both the 2-D case and the 3-D case, using a logistic
approximation is a viable way to estimate the critical temperature of a spin system.

Alternative Update Methods: Wolff Algorithm

This section will assume terminology and methods from the previous section.
The Wolff Algorithm is an adjustment to the Swendsen-Wang algorithm that also uses

spin clusters to find equilibrium states of the Ising model Markov Chain. However, this
algorithm only involves flipping the spin of a single spin cluster at any given iteration [13].
As a result, it takes less time to perform a single update to a spin state, and it still avoids
the critical slowing-down effect that poses a challenge to local state updates. However, the
restriction of only updating one cluster per iteration decreases the convergence rate of the
Wolff Algorithm as compared to the Swendsen-Wang Algorithm. So, for large systems and
a high number of iterations, it may be more efficient to use the Wolff Algorithm, but it is
not always the better option.

Identically to the Swendsen-Wang Algorithm, a bond forms (event B) between identical-
spin particles i and j with probability P(B∣σi = σj) = 1− exp(−2J/T). If i and j do not have
the same spin, then the probability that a bond forms between them is P(B∣σi ≠ σj) = 0 [13].

The Wolff Algorithm is as follows [13]:

1. Form an initial spin state, where each spin is +1 or −1 with probability 1
2 .

16



Figure 16: The 1st, 18th, 36th, and 54th iterations of the Wolff Algorithm for a 50× 50 lattice
of spins with J = 1 and T = 1.5. A blue cell represents a spin of +1 and a red cell represents
a spin of −1.

2. Choose a uniformly random spin location within that state.

3. Find the spin cluster containing that spin by following the blacklist-connection
method given in the Swendsen-Wang section.

4. Flip the sign of every spin within that spin cluster.

5. Using the resulting spin state from step 4 as the updated state, repeat steps 2, 3, and
4 until a pre-specified number of iterations is reached.

An example of the Wolff algorithm for a 2-D initial spin state is given in Figure 16. Note
that this takes 54 iterations to converge to a magnetized state, whereas the Swendsen-Wang
algorithm took only 7 iterations to converge from the same starting temperature.

The Wolff algorithm is extremely fast for spin states that do not converge to a mag-
netized state (i.e. initial states with a high temperature). However, the time complexity
per iteration approaches the Swensden-Wang time complexity as the Wolff algorithm
converges to a magnetized state. This is because most cells will be clustered together as a
magnetized state is reached.

The magnetization and energy versus temperature plots for the 2-D case are given in
Figure 17. This figure is similar to the one obtained for the Swendsen-Wang Algorithm.

For this 2-D case, the logistic approximation to the magnetization curve gives xB = 2.39
as an estimate for the critical temperature at which a phase transition occurs. Because the
analytical value for the critical temperature is Tc = 2.269, the relative error between the
logistic approximation to the Wolff algorithm simulation of the 2-D Ising model is:

∣Tc − xB∣
Tc

= ∣2.269− 2.39∣
2.269

= 0.0533 = 5.33% (5)

Performing the same analysis for the 3-D case gives Figures 18 and 19. The logistic
approximation to the magnetization curve gives xB = 4.35 as an estimate for the critical
temperature at which a phase transition occurs. Because the numerically accepted value for

17



Figure 17: Left: The average of the final energies of 10 2-D spin states simulated at N = 100
temperatures ranging from 1 to 5. Right: The average of the magnitude of the final
magnetizations of 10 2-D spin states simulated at N = 100 temperatures ranging from 1 to
5. Both plots consider the average measurement per spin particle.

18



the critical temperature is Tc = 4.51 [3], the relative error between the logistic approximation
to the Wolff algorithm simulation of the 3-D Ising model is:

∣Tc − xB∣
Tc

= ∣4.51− 4.35∣
4.51

= 0.0355 = 3.55% (6)

Just like the Swendsen-Wang Algorithm, the logistic approximation for the Wolff Algo-
rithm gives a reasonable estimate for the critical temperature at which a phase transition
occurs. The relative error between the known value and the estimated value is low for
both the 2-D case and the 3-D case.

Figure 18: The first, third, fifth, and seventh states of the Wolff Algorithm for a 5× 5× 5
lattice of spins with J = 1 and T = 3. A blue dot represents a spin of +1 and a red dot
represents a spin of −1.

19



Figure 19: Left: The average of the final energies of 10 3-D spin states simulated at N = 100
temperatures ranging from 1 to 10. Right: The average of the magnitude of the final
magnetizations of 10 2-D spin states simulated at N = 100 temperatures ranging from 1 to
10. All plots consider the average measurement per spin particle.

Physical Applications: Numerical Quantum Path Integration on a Lattice

As we’ve seen in the previous section, different algorithms for numerical simulation
of Ising models can exploit the problem structure of the problem in arbitrarily complex
ways for increased computational efficiency. However, while the physics of these idealized
models are simple in concept, they can also be used within the context of intricate and
compelling physical problems, such as Feynman path integrals [2]. The high level idea of
quantum path integration starts with the classical Hamiltonian principle of least action.

An action S is a time integral over the Lagrangian L, which characterizes the state of the
physical system. For us (and mostly in general) this Lagrangian is the difference between
the kinetic and potential energy of a system. The principle works as such, say for a ball
thrown in the air: while we may imagine any hypothetical path for the ball that we like,
the true path is remarkably the one for which S is least.

One of Feynman’s many contributions to science was to find this principle of least

20



action an incomplete approximation and only a limiting behavior in S
h̄ →∞ (where h̄ is

the reduced Planck’s constant). All paths contribute to this calculation, while the one of
least action simply contributes the most. Our goal for this section will be to simulate and
sum over these trajectories for a quantum harmonic oscillator, which will use Ising lattice
simulation via Metropolis-Hastings as a subroutine during numerical integration.

The harmonic oscillator with potential function V(x) = 1
2 mω2x2 has a ground state

wave function analytically described by ∣ψ0∣2 =
√mω

π e−mωx2
[12], which will be our job to

recover numerically. In the code, we set the constants m, ω to m = ω = 1 for computational
convenience.

Note that the wave function in quantum mechanics is a probability density function that
describes the probability of observing a particle at a certain position, which is an integral.
Before computing this, however, we will set up the problem as follows. The harmonic
oscillator is a one-dimensional function of space whose trajectory we will simulate over
time. We denote the starting and final positions in space-time as a = (xa, ta) and b = (xb, tb),
respectively. In Figure 20 we show a few sample paths of these trajectories. As we can see
by the areas of the trajectories that overlap, we expect our wave function to have mean
zero. This is the classical trajectory, and observe this because we initialize our system with
zero potential energy. All quantum paths should be a fluctuation about this constant path.

Figure 20: A few particle paths of the harmonic oscillator over time, imposing periodic
boundary conditions such that xa = xb

As the theory for this problem setup is quite difficult, we will try to motivate our
problem numerically where possible, which will require omitting some key steps in the
derivations. First, we discretize the spatial coordinates into a grid of N equidistant points
of size ε, or εN = tb − ta. We use j ∈ [N] to denote specific points along this time domain.

One of Feynman’s most important mathematical observations was to link Green’s space-
time propagator function G(xa, ta; xb, tb) to the action of a free particle (i.e. V = 0). The
propagator is the integral over all paths between xa and xb, defined over our discretized

21



space as:

G(x, t; x0, t0) = ⨋ dx1dx2 . . . dxN−1eiS[x,x0]

where S[a, b] denotes the action of a path from a to b, and brackets denote that this a
functional dependent on the path x(t). Feynman’s second important observation was to
link this propagator with the wave function of a particle, where:

∣ψn∣2 = lim
τ→∞

eEnτG(x, t = −iτ; x0, 0)

with En = n+ 1
2 for n ∈N for the case of the harmonic oscillator. While we have skipped over

a few steps, we are almost there by the connection between the action and Hamiltonian
H of a system, where S[xj+1, xj] = −i ∫

τj+1
τ H(τ)dτ. The theoretical behavior in imaginary

time allows us the compute the problem in entirely real coordinates:

G(x,−iτ; x0, 0) = ∫ dx1dx2 . . . dxne− ∫
τ

0 H(τ)dτ

We now have an expression for which we can solve numerically. Denoting the energy
at each point j ∈ [N] by U(xj), we can obtain the integral over H by averaging over the
energies by:

∫
τ

0
H(τ)dτ ≈∑

j
εUj

We also have an expression for this energy Uj, which is just the sum of the kinetic and
potential energies. For the harmonic function, this involves discretizing a derivative dx

dt
and averaging over potential energies. For this, we use a central difference method and
Simpson’s rule, or:

U(xj) =
N
∑
j=1
[m

2
(

xj+1 − xj−1

2ε
)

2
+

V(xj)+ 4V((xj + xj−1)/2)+V(xj−1)
6

]

In our experiments, we note that a simpler first order Euler scheme or linear average
seemed to do just as well. This is likely because the harmonic function is fairly well
behaved, as it is smooth (and, though technically not a restriction, the position values
are statistically likely to be centered around zero, so the function is also basically Lips-
chitz). We can see that this calculation also requires us to discretize space as well as time,
whose fineness we denote as δ. Though the average space step size is a fixed number,
we introduce a small amount of randomness by drawing a uniform number in [0, 1] and
multiplying the step size by its difference with 0.5. We find that this makes the path action
calculations look slightly more “realistic” in the sense that they should appear to be a
random walk.

To start the algorithm, we choose a random path along this lattice grid. All paths are

22



constrained to have periodic boundary conditions such that xa = xb. Each lattice point in
the grid has an associated wave value function, which is the probability of finding the
particle at this point in space. This probability is merely the sum of all times the point is
visited divided by the total number of traversals from one point in the grid the the other.
The wave function will therefore be obtained by creating a density plot over positions (and
frequencies thereof) at each step in the simulation.

Each path also has an associated energy, which we calculate with the above scheme.
This is now where Metropolis-Hastings is used in the computation. A random position xj
associated with time tj is changed to a new position x′j. For each coordinate that is changed,
its change is weighted by the Boltzmann distribution with Metropolis-Hastings (M-H),
where P = e−εU = e−U/kBT and kB is Boltzmann’s constant. The rejection/acceptance criteria
for the move is then the same as the M-H step (i.e. the change in energy must be larger
than some random number).

Figure 21: Path energies over Metropolis sweeps. These energies are averaged over n = 50
experiments, as trial-to-trial variability can be quite high. When we zoom in on the first
100 sweeps, we note that the system only takes about 20 to reach energy stabilization.

We plot the energies over the number of Metropolis sweeps (k = 6000) in Figure 21. Each
sweep is essentially a path simulation over the discretization we set up previously, where
each path has an associated energy. The process is averaged over a number over Metropolis-
Hastings experiments as the energies can fluctuate quite a bit between experiments. We
see that the thermalization stabilizes quite fast from a cold starting point with no energy
in the system. After about only 20 sweeps, the system stabilizes at its asymptotic limit
around S = 50. Thus, we can conclude that for this simple problem, Metropolis-Hastings
quickly converges to the realistic physical system. Our next and final question will be to
compare the rate of the simulation fidelity to the calculation of the actual wave function.

The wave function is the probability of finding a particle in a given state. Having done
our numerical simulation to obtain the paths and energies, we can now calculate ∣ψ0∣2 by
building up a density plot in the paths over the number of sweeps. Below, we can see that
the time to convergence in Metropolis-Hastings is not necessarily commensurate with the
time to get a wave function that looks like the analytical solution. At iteration/sweep 50,

23



we are still quite far away from the solution. However, our algorithm eventually merges
to the true solution in the limit, and the numerical integration succeeds. For such a simple
algorithm, Metropolis-Hastings can be used in a variety of physical contexts.

Figure 22: Even though the energies converge quite fast, this does not imply the same
number of M-H sweeps to converge to the true wave function when m = ω = 1

Conclusion

In this paper, we showed how to simulate 2-D and 3-D Ising models with the Metropolis-
Hastings, Gibbs, Swendsen-Wang, and Wolff algorithms. We found that we could use
regression to estimate the critical temperature of the spin system, which showed the
viability and accuracy of each respective method. Furthermore, we showed that we were
able to use Metropolis-Hastings to simulate a quantum wave function using numerical
integration for a simple harmonic oscillator.

The algorithms presented in this paper face various limitations. Our implementations
of cluster model algorithms did converge to expected values, but the random nature of
Monte Carlo methods caused estimates for the critical temperature in both 2-D and 3-D
cases to vary slightly between simulations. Additionally, fitting a logistic curve to data
requires minimizing an extremely nonlinear function over four variables. It is possible that
the Scipy minimizer did not find the global minimum for the RMSE, which would lead to

24



further discrepancies between simulations.
Another constraining factor of our analyses is that analytical solutions for the physics

of the problems were sometimes lacking, and therefore the exactness of our methods could
only be verified for specific, simple cases. Dimensionality is a fundamental consideration
in choosing amongst Markov Chain Monte Carlo methods, and we were constrained by
the capabilities and algorithmic complexities of these methods as we scaled the Ising
model into different dimensions. For example, cluster methods are only sensible to use in
dimensions higher than 1. In the case of our quantum numerical integration scheme, we
had to limit the scope of our physical systems as even simple anharmonic oscillators have
poorly understood analytical solutions. In numerical analysis, one of the most important
objectives is to create sub-problems with recoverable solutions to weigh the benefits of
various approaches. We see that, in practice, we might only be able to find a limited set of
such sub-problems.

Overall, we were successful in demonstrating how statistical algorithms may be applied
to simulate the evolution of Ising model spin states. We additionally showed how those
same techniques may be used to visualize quantum wave functions. Interesting further
directions of this work include extrapolating the Ising model into higher dimensions and
modeling other, more complex quantum wave functions.

25



References

[1] Cristian C. Bordeianu, Manuel J. Paez, and Rubin H. Landau. Computational physics:
Problem solving with computers. 2015.

[2] RP Feynman and AR Hibbs. Quantum mechanics and path integrals. Journal of
Neurophysiology, 58, December 1965.

[3] B. Fierro, F. Bachmann, and E.E. Vogel. Phase transition in 2d and 3d ising model by
time-series analysis. Physica B: Condensed Matter, 384, October 2006.

[4] Hills S. E. Racine-Poon A Gelfand, A. E. and A. F. M. Smith. Illustration of bayesian
inference in normal data models using gibbs sampling. 1990.

[5] WK Hastings. Monte carlo sampling methods using markov chains and their applica-
tion. 1970.

[6] JJ Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. 1982.

[7] Erik Luijten. Introduction to cluster monte carlo algorithms. 2006.

[8] Dennis V. Perepelitsa. Path integrals in quantum mechanics. 2010.

[9] Satya Singh. The ising model: Brief introduction and its application. 2020.

[10] Ramesh Sridharan. The ising model and markov chain monte carlo.

[11] Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in monte
carlo simulations. Physical Review Letters, 58(2), January 1987.

[12] Bruno Gimenez Umbert. Quantum mechanics by numerical simulation of path
integral. 2017.

[13] Ulli Wolff. Collective monte carlo updating for spin systems. Physical Review Letters,
62(4), January 1989.

26


	Introduction
	Methods and Results
	Conclusion

